Oberlin College Physics 103, Fall 2023

Model Solutions to Assignment 11: Fluids; Oscillations

Problems from College Physics by P.P. Urone and R. Hinrichs.

Chapter 11, problem 40: Bird bones

Our procedure follows U\&H example 11.10 on page 455.
(a) apparent mass loss $=45.0 \mathrm{~g}-3.60 \mathrm{~g}=41.4 \mathrm{~g}$, so mass of displaced water is 41.4 g
(b) density of water is $1.000 \mathrm{~g} / \mathrm{cm}^{3}$, so volume of displaced water $=$ volume of bone $=41.4 \mathrm{~cm}^{3}$
(c) average density of bone is

$$
\frac{\text { mass of bone }}{\text { volume of bone }}=\frac{45.0 \mathrm{~g}}{41.4 \mathrm{~cm}^{3}}=1.09 \mathrm{~g} / \mathrm{cm}^{3}
$$

【Grading: 2 points for part (a), 2 points for part (b), 2 points for formula for density of bone, 2 points for number 1.09, 1 point for units " $\mathrm{g} / \mathrm{cm}^{3}$ ", 1 point for three significant figures in final numerical answer.]

Chapter 11, problem 42: Density of a fluid

(a) apparent mass loss $=390.0 \mathrm{~g}-350.5 \mathrm{~g}=39.5 \mathrm{~g}$, so mass of displaced fluid is 39.5 g
(b) density of iron is $7.8 \mathrm{~g} / \mathrm{cm}^{3}$, so

$$
\text { volume of iron }=\frac{\text { mass of iron }}{\text { density of iron }}=\frac{390.0 \mathrm{~g}}{7.8 \mathrm{gm} / \mathrm{cm}^{3}}=50 \mathrm{~cm}^{3}
$$

and the volume of iron is the same as the volume of displaced fluid (c) density of fluid is

$$
\frac{\text { mass of displaced fluid }}{\text { volume of displaced fluid }}=\frac{39.5 \mathrm{~g}}{50 \mathrm{~cm}^{3}}=0.79 \mathrm{gm} / \mathrm{cm}^{3}
$$

Table 11.1 on page 434 suggests that the fluid is ethyl alcohol. [Grading: 2 points for part (a), 2 points for formula for volume of iron in part (b), 2 points for number 50 , 1 point for two significant figures " 50 ", 2 points for density of fluid, 1 point for identification as ethyl alcohol (or as some other fluid).】

Chapter 16, problem 18: Bouncing on a diving board

For simple harmonic oscillation,

$$
\omega=\sqrt{\frac{k}{m}} \quad \text { so } \quad \operatorname{period}=T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{k}}
$$

The female and male divers have different masses and hence different periods, but they're on the same diving board so they have the same k. Solve for k :

$$
\begin{aligned}
T & =2 \pi \sqrt{\frac{m}{k}} \\
T^{2} & =4 \pi^{2} \frac{m}{k} \\
k & =4 \pi^{2} \frac{m}{T^{2}}
\end{aligned}
$$

The female (subscript f) and male (subscript m) divers have the same k so

$$
\begin{aligned}
4 \pi^{2} \frac{m_{f}}{T_{f}^{2}} & =4 \pi^{2} \frac{m_{m}}{T_{m}^{2}} \\
\frac{m_{f}}{T_{f}^{2}} & =\frac{m_{m}}{T_{m}^{2}} \\
m_{f}\left(\frac{T_{m}}{T_{f}}\right)^{2} & =m_{m} .
\end{aligned}
$$

We don't need to actually find the value of k, we don't need to multiply by $4 \pi^{2}$, we need to take a square only once, not twice. The numerical result is

$$
m_{m}=(55.0 \mathrm{~kg})\left(\frac{1.05 \mathrm{~s}}{0.800 \mathrm{~s}}\right)^{2}=94.7 \mathrm{~kg}
$$

(I've emphasized that you don't need to find a value for k. But if you do, it's $3.39 \mathrm{kN} / \mathrm{m}$.)
\llbracket Grading: 2 points for writing down a formula for ω or for period $T, 2$ points for noticing that k will be the same for both divers, 4 points for getting the number $94.7,1$ point for three significant figures, 1 point for units.]

Chapter 16, problem 20: Baby bouncer

(Side note: As a parent, I recommend this toy for giving babies both entertainment and exercise. Both of our kids loved it.)
(a)

$$
k=\frac{\text { force }}{\text { extension }}=\frac{(8.0 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.250 \mathrm{~m}}=0.31 \mathrm{kN} / \mathrm{m} .
$$

(b)

$$
T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{m}{m g /(\text { extension })}}=2 \pi \sqrt{\frac{\text { extension }}{g}}=2 \pi \sqrt{\frac{0.250 \mathrm{~m}}{9.81 \mathrm{~m} / \mathrm{s}^{2}}}=1.00 \mathrm{~s} .
$$

(c) From the textbook's equation 16.21,

$$
v_{\max }=\frac{2 \pi(\text { amplitude })}{T}=\frac{2 \pi(0.200 \mathrm{~m})}{1.00 \mathrm{~s}}=1.26 \mathrm{~m} / \mathrm{s} .
$$

【Grading: There are several ways to do this problem. If you use the numerical value of k found in part (a), then the results for parts (b) and (c) will have two significant figures, not three. Consequently, I won't give detailed grading tips on number of significant figures. Generally, be on the lookout for missing units and absurd significant figures. As a guideline, part (a) earns 3 points, part (b) earns 4 points, part (c) earns 3 points.]

