Physics 103 Elementary Physics I

Model Solutions to Second Examination, 2023

1. Red light

A car of mass $1.53 \times 10^{3} \mathrm{~kg}$ is traveling at $8.94 \mathrm{~m} / \mathrm{s}$ when the driver hits the break petal, supplying $3.82 \times 10^{3} \mathrm{~N}$ of breaking force. How far does the car travel before coming to rest?

Solution: This is an $\sum \vec{F}=m \vec{a}$ problem.
The only horizontal force is the breaking, so the horizontal acceleration is

$$
\frac{F}{m}=\frac{-3.82 \times 10^{3} \mathrm{~N}}{1.53 \times 10^{3} \mathrm{~kg}}=-2.50 \mathrm{~m} / \mathrm{s}^{2} \equiv a_{0}
$$

The relevant motion equation is the one connecting speed and displacement, without mentioning time:

$$
\begin{aligned}
v^{2}(x) & =v_{0}^{2}+2 a_{0}\left(x-x_{0}\right) \\
0 & =v_{0}^{2}+2 a_{0} \text { (stopping distance) } \\
\text { stopping distance } & =\frac{v_{0}^{2}}{-2 a_{0}}=\frac{(8.94 \mathrm{~m} / \mathrm{s})^{2}}{5.00 \mathrm{~m} / \mathrm{s}^{2}}=16.0 \mathrm{~m}
\end{aligned}
$$

Alternatively, you can solve this problem using the work-kinetic energy theorem.
【Grading: 2 points for finding the $F=m a$ strategy; 2 points for finding $a_{0} ; 2$ points for the kinematic equation for $v(x) ; 2$ points for solving it for the stopping distance; 1 point for the number; 1 point for three significant figures.】

2. Baseball

A pitcher accelerates a 0.14 kg hardball from rest to $42 \mathrm{~m} / \mathrm{s}$ in 0.062 s . How much work does the pitcher do on the ball?

Solution: Use the work-kinetic energy theorem. (The time required is irrelevant.)

$$
\begin{aligned}
\text { work } & =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \\
& =\frac{1}{2}(0.14 \mathrm{~kg})(42 \mathrm{~m} / \mathrm{s})^{2}-0 \\
& =0.12 \mathrm{~kJ}
\end{aligned}
$$

I will accept an answer of 120 J , although that last digit isn't really significant, but an answer of 123 J is wrong because the digit " 3 " is not significant.
\llbracket Grading: 2 points for finding the work-KE strategy; 3 points for the work-KE equation; 3 points for the number; 2 points for two significant figures.]

3. Firecracker

Two carts - a red cart with mass m_{r} and a blue cart with mass m_{b} - sit on the table with a small firecracker sandwiched between them. The firecracker explodes and the two carts fly apart from each other. Find an expression for the ratio of the kinetic energy of the red cart to the kinetic energy of the blue cart.

Solution: Momentum is conserved during the explosion. Total momentum is initially zero, so it has to be zero when they fly apart. They fly apart in opposite directions with speeds v_{r} and v_{b} such that

$$
m_{r} v_{r}=m_{b} v_{b}
$$

Thus $v_{r}=\left(m_{b} / m_{r}\right) v_{b}$. The kinetic energy ratio is

$$
\frac{\mathrm{KE}_{r}}{\mathrm{KE}_{b}}=\frac{\frac{1}{2} m_{r} v_{r}^{2}}{\frac{1}{2} m_{b} v_{b}^{2}}=\frac{m_{r}\left[\left(m_{b} / m_{r}\right) v_{b}\right]^{2}}{m_{b} v_{b}^{2}}=\frac{m_{b}}{m_{r}}
$$

【Grading: 2 points for recognizing momentum is conserved; 2 points for the momentum equation; 2 points for solving the momentum equation for v_{r} (or for v_{b}); 2 points for writing the KE equation; 2 points for solving it.]
4. Rescue

Tarzan (mass $m_{T}=85.4 \mathrm{~kg}$) stands on a tree limb height $h=12.4 \mathrm{~m}$ above the Zambezi River and glances down to see a child in a canoe drifting slowly toward Victoria Falls. He grabs a convenient vine, swings down, and (while traveling horizontally) snatches the child out of the canoe. The Tarzan-child combination travels at speed $v_{a s}=13.1 \mathrm{~m} / \mathrm{s}$ immediately after the snatch. What is the mass of the child $\left(m_{C}\right)$?

Solution: This problem should remind you of the "projectile motion" lab.
Call Tarzan's speed immediately before the snatch $v_{b s}$.
Conservation of energy during the swing:

$$
m_{T} g h=\frac{1}{2} m_{T} v_{b s}^{2} \quad \text { so } \quad v_{b s}^{2}=2 g h
$$

(You could plug in numbers to find $v_{b s}=15.6 \mathrm{~m} / \mathrm{s}$, but that's not required.) Conservation of momentum during the snatch:

$$
m_{T} v_{b s}=\left(m_{T}+m_{C}\right) v_{a s} \quad \text { so } \quad v_{b s}=\left(1+m_{C} / m_{T}\right) v_{a s}
$$

Eliminate $v_{b s}$ between these two equations:

$$
\begin{aligned}
\sqrt{2 g h} & =\left(1+m_{C} / m_{T}\right) v_{a s} \\
\frac{\sqrt{2 g h}}{v_{a s}} & =1+\frac{m_{C}}{m_{T}} \\
\left(\frac{\sqrt{2 g h}}{v_{a s}}-1\right) m_{T} & =m_{C}
\end{aligned}
$$

Plugging in numbers, $m_{C}=16.3 \mathrm{~kg}$.
【Grading: 1 point for recognizing energy conservation during the swing; 2 points for finding expression for $v_{b s} .1$ point for recognizing momentum conservation during the snatch; 2 points for finding expression for $v_{b s}$. 1 point for equating the two expressions for $v_{b s}, 1$ point for solving for $m_{C}, 1$ point for plugging in numbers, 1 point for three significant figures.]

