Atomic units

	conventional basic dimensions	unconventional basic dimensions
	(mass, length, time)	(mass, length, energy = ML^2/T^2)
\hbar	$[\mathrm{ML^2/T}]$	$[{ m M}^{1/2}{ m LE}^{1/2}]$
m	[M]	[M]
$e^2/4\pi\epsilon_0$	$[\mathrm{ML^3/T^2}]$	[LE]

a. Characteristic energy:

Using unconventional basic dimensions, first combine quantities \hbar and $e^2/4\pi\epsilon_0$ to get rid of [L]. (This is the only way to cancel out the [L]s.) This division results in

quantity
$$\frac{\hbar}{e^2/4\pi\epsilon_0}$$
 with dimensions [M^{1/2}/E^{1/2}].

Square both sides to get

quantity
$$\frac{\hbar^2}{(e^2/4\pi\epsilon_0)^2}$$
 with dimensions [M/E].

Invert and multiply by m (the only way to get rid of the [M]s) to find the only characteristic energy,

quantity
$$\frac{m(e^2/4\pi\epsilon_0)^2}{\hbar^2}$$
 with dimensions [E].

This energy is equal to two Rydberg units (2 Ry).

b. Characteristic time:

Using conventional basic dimensions, first combine quantities \hbar and $e^2/4\pi\epsilon_0$ to get rid of [L]:

quantity
$$\frac{\hbar^3}{(e^2/4\pi\epsilon_0)^2}$$
 with dimensions $\frac{[\mathrm{M}^3\mathrm{L}^6/\mathrm{T}^3]}{[\mathrm{M}^2\mathrm{L}^6/\mathrm{T}^4]} = [\mathrm{MT}].$

Divide by m to get the only quantity with the dimensions of time:

$$\frac{\hbar^3}{m(e^2/4\pi\epsilon_0)^2} \equiv \tau_0.$$

I remember this as

$$\tau_0 = \frac{\hbar}{2Ry} = 2.4 \times 10^{-17} \text{ s} = 0.024 \text{ fs}.$$

c. Bonus — Bohr model:

For classical circular orbits,

$$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}.$$

To this Bohr adds the quantization condition for angular momentum, namely that for the nth Bohr orbit,

$$n\hbar = mv_n r_n.$$

Thus the radius of the nth Bohr orbit comes through

$$\frac{m}{r_n}v_n^2 = \frac{m}{r_n}\left(\frac{n\hbar}{mr_n}\right)^2 = \frac{1}{4\pi\epsilon_0}\frac{e^2}{r_n^2}$$
$$\frac{n^2\hbar^2}{mr_n} = e^2/4\pi\epsilon_0$$

whence

or

 $r_n = n^2 \frac{\hbar^2}{m(e^2/4\pi\epsilon_0)} \equiv n^2 a_0.$

Then the period of the *n*th Bohr orbit is

$$\begin{aligned} & \operatorname{period}_n & = & \frac{\operatorname{circumference}_n}{v_n} \\ & = & \frac{2\pi r_n}{n\hbar/mr_n} \\ & = & \frac{2\pi m r_n^2}{n\hbar} \\ & = & \frac{2\pi m n^4 a_0^2}{n\hbar} \\ & = & n^3 \frac{2\pi m a_0^2}{\hbar} \\ & = & 2\pi n^3 \frac{m}{\hbar} \frac{\hbar^4}{m^2 (e^2/4\pi\epsilon_0)^2} \\ & = & 2\pi n^3 \frac{\hbar}{m (e^2/4\pi\epsilon_0)^2} \\ & = & 2\pi n^3 \tau_0 \end{aligned}$$

d. Heartbeats to orbits:

The average person lives about 80 years. The average heartbeat lasts about one second. The number of seconds in a year is surprisingly close to $\pi \times 10^7$. Thus the average heart beats about 3×10^9 times. (This three billion beats represents spectacular performance: the fuel pump in a car can't do nearly as well.)

How long does it take an innermost electron to execute one Bohr orbit?

The orbital time is $2\pi\tau_0$ or about 1.5×10^{-16} s.

How long does it take this electron to execute three billion orbits (a "lifetime's worth")? About 5×10^{-7} s.

So how many "atom lifetimes" pass in one second?

About $1/(5\times 10^{-7})$ or two million.

e. The time-dependent Schrödinger equation in scaled variables:

For any function f(x) we have

$$\begin{array}{rcl} \frac{\partial f(x)}{\partial x} & = & \frac{\partial f(\tilde{x})}{\partial \tilde{x}} \frac{\partial \tilde{x}}{\partial x} = \frac{\partial f(\tilde{x})}{\partial \tilde{x}} \frac{1}{a_0} \\ \frac{\partial^2 f(x)}{\partial x^2} & = & \frac{\partial}{\partial \tilde{x}} \left[\frac{\partial f(\tilde{x})}{\partial \tilde{x}} \frac{1}{a_0} \right] \frac{\partial \tilde{x}}{\partial x} = \frac{\partial^2 f(\tilde{x})}{\partial \tilde{x}^2} \frac{1}{a_0^2}. \end{array}$$

Apply this to the time-dependent Schrödinger equation:

$$\begin{split} i\hbar\frac{\partial\Psi}{\partial t} &=& -\frac{\hbar^2}{2m}\nabla^2\Psi - \frac{e^2}{4\pi\epsilon_0}\frac{1}{r}\Psi \\ i\hbar\frac{1}{\tau_0}\frac{\partial\Psi}{\partial\tilde{t}} &=& -\frac{\hbar^2}{2m}\frac{1}{a_0^2}\tilde{\nabla}^2\Psi - \frac{e^2}{4\pi\epsilon_0}\frac{1}{a_0\tilde{r}}\Psi \\ i\frac{\partial\Psi}{\partial\tilde{t}} &=& -\frac{1}{2}\left[\frac{\hbar}{m}\frac{\tau_0}{a_0^2}\right]\tilde{\nabla}^2\Psi - \left[\frac{\tau_0}{\hbar}\frac{e^2}{4\pi\epsilon_0}\frac{1}{a_0}\right]\frac{1}{\tilde{r}}\Psi. \end{split}$$

However, quick perusal of the definitions of a_0 and τ_0 will convince you that both of the expressions in square brackets are equal to 1! Thus

$$i\frac{\partial\Psi}{\partial\tilde{t}} = -\frac{1}{2}\widetilde{\nabla}^2\Psi - \frac{1}{\tilde{r}}\Psi.$$

Multiply both sides by $a_0^{3/2},$ because $\widetilde{\Psi}=a_0^{3/2}\Psi,$ to get

$$i\frac{\partial\widetilde{\Psi}}{\partial\widetilde{t}} = -\frac{1}{2}\widetilde{\nabla}^2\widetilde{\Psi} - \frac{1}{\widetilde{r}}\widetilde{\Psi}.$$

Grading:

- 2 points for part **a**
- 2 points for part \mathbf{b}
- 2 points extra for part ${\bf c}$
- 3 points for part \mathbf{d}
- 3 points for part e