Atomic units

conventional basic dimensions | unconventional basic dimensions
(mass, length, time) (mass, length, energy = ML?/T?)
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a. Characteristic energy:
Using unconventional basic dimensions, first combine quantities 7 and e?/4meq to get rid of [L]. (This is the

only way to cancel out the [L]s.) This division results in

quantity oy — with dimensions [M'/2/E'/2].
Square both sides to get )
tity ——— with di i M/E].
quantity (dneo)? with dimensions [M/E]
Invert and multiply by m (the only way to get rid of the [M]s) to find the only characteristic energy,
2 4 2
quantity m(e”/4meo)” with dimensions [E].
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This energy is equal to two Rydberg units (2 Ry).

b. Characteristic time:
Using conventional basic dimensions, first combine quantities % and e?/4meg to get rid of [L]:
h? [MB3LS /T3]

quantity ————5 with dimensions

(€2 /dmeg)? [MZLS/T4] — [MT].

Divide by m to get the only quantity with the dimensions of time:
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I remember this as 5
=— =24x10"1" 5 =10.024 fs.
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c. Bonus — Bohr model:
For classical circular orbits,
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To this Bohr adds the quantization condition for angular momentum, namely that for the nth Bohr orbit,
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Thus the radius of the nth Bohr orbit comes through
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d. Heartbeats to orbits:
The average person lives about 80 years. The average heartbeat lasts about one second. The number of
seconds in a year is surprisingly close to 7 x 107. Thus the average heart beats about 3 x 10° times. (This

three billion beats represents spectacular performance: the fuel pump in a car can’t do nearly as well.)

How long does it take an innermost electron to execute one Bohr orbit?
The orbital time is 277y or about 1.5 x 10716 s.

How long does it take this electron to execute three billion orbits (a “lifetime’s worth”)?
About 5 x 1077 s.

So how many “atom lifetimes” pass in one second?
About 1/(5 x 10~7) or two million.

e. The time-dependent Schrodinger equation in scaled variables:
For any function f(z) we have
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Apply this to the time-dependent Schrédinger equation:
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However, quick perusal of the definitions of ag and 79 will convince you that both of the expressions in square
brackets are equal to 1! Thus
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Multiply both sides by ay’~, because ¥ = ay’ ¥, to get
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Grading:

2 points for part a
2 points for part b
2 points extra for part c
3 points for part d

3 points for part e



