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In an effort to clarify the role of surface charges on the conductors of elementary electric circuits
and the electric fields in the space around them, we present a quantitative analysis of (two-
dimensional) circular current loops. It is also noted that, in general, lines of Poynting flux liein the

equipotential surfaces of quasistatic systems.

There is a peculiar discontinuity in the usual presenta-
tion of the first two major electrical topics in standard in-
troductory physics courses. In electrostatics, our attention
focuses explicitly on the electric charges residing on con-
ductors and on the electric fields existing in the space exter-
nal to the conductors. Then, in the next lecture (or chapter),
we proceed to electric circuits and our attention focuses on
batteries, resistors, hookup wire, and eventually capaci-
tors. A perceptive freshman may see the apparent non se-
quitur and ask, “Don’t we have to worry about charge dis-
tributions any more?” and “What are the electric fields in
the vicinity of the circuit?”” The student might even won-
der, “How does a conduction electron in a crooked piece of
wire, a long way from the battery, know enough to turn the
corner?”

These issues are only rarely dealt with in textbooks, at
either the introductory or intermediate level. The most
complete textbook discussion known to this writer is that
of Jefimenko.! Solutions to “Merzbacher’s puzzle”? have
already been discussed many times in the American Jour-
nal of Physics over the years. The fact that so authoritative
a teacher raised the topic again suggests its subtlety and
intransigence.’

L. THE SIMPLE ANSWER

The simple answer to our “perceptive freshman’s” ques-
tions is that most of the time we don’t need to know what
the charge distributions and external fields are, which is
fortunate because they are usually very difficult to calcu-
late or to measure. Such charges and fields do exist—nature
provides them automatically and they are essential for
guiding the conduction current along the wires—but they
do not figure explicitly in our quantitative analysis or prac-
tical construction of ordinary electric circuits. The charges
and fields go hand in hand: if we can neglect one, we can
neglect the other; if we insist on talking about one, we must
include the other.

For instance, Kirchhoff’s loop rule (suitably stated in
terms of the sum of potential increments) applies to any
mathematical path we might choose. But by choosing a
path that coincides with the hardware of the circuit, we
have simple means to bookkeep the increments in potential
as we proceed around the loop (emf’s, IR-drops, etc.). This
is sufficient for a quantitative analysis of the behavior of the
circuit. Infinitely many other “Kirchhoff-loop” equations
exist for loops that do not coincide with the circuit but they
do not allow us to solve for anything of interest.

For strictly dc circuits, the Kirchhoff point rule is rigor-
ous. When the potentials are time varying, the point rule is
no longer rigorous because of the time-varying charge on
the surface of the hookup wire. Fortunately a great deal of
electronic technology is at low enough frequencies that the
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numerical error in continuing to use the point rule is well
below the threshold of detectability.

The reason not just freshmen but even professional elec-
tronics engineers do not want to talk about the charges
distributed on electric circuits is that it is very difficult to
determine these charges quantitatively. So one goes to
great pains to avoid needing to determine them. This is
usually done by restricting consideration to the ‘“slowly
varying” or “quasistatic” case, typically frequencies below
a few megahertz. For higher frequencies, in later courses in
high-frequency electronics and electromagnetic fields, the
student learns about the importance of “‘stray capacitance”
and the technology of transmission lines and waveguides,
which were invented in the spirit of “when you can’t
fight’em, join’em.” That is, in these latter cases the geome-
tries are chosen in such a way that the charges and fields are
well defined and calculatable.

As long as we stay in the “slowly varying” limit, not only
can we use the Kirchhoff point rule but also, to the same
level of precision, we can accept the well-known but nonob-
vious rule concerning capacitors that the charges on the
two plates of any one capacitor always occur with equal
magnitude and opposite sign. This rule follows from
Gauss’s law and the assumption that the only non-negligi-
ble electric field is in the small space between the capacitor
plates.

The charges also are responsible for forces that one por-
tion of a circuit exerts upon another.* Fortunately most
practical circuits are rigid enough that these forces have
negligible effect and we have no need to calculate them.

II, IMPORTANCE OF GEOMETRY

The reason that it is so hard to know the surface charges
on the conductors of a circuit is that their distribution de-
pends on the detailed geometry of the circuit itself and even
of its surroundings.® For instance, we would have to specify
exactly how the pieces of hookup wire are bent. And since
most real-world circuits have rather complicated geome-
tries, the mathematical difficulty of making this calcula-
tion is forbidding.

There are two useful things that can be done, however.
One is to choose a very simple, idealized geometry that is
tractable and study it as a test case. The other is to look for
qualitative effects without trying to get quantitative.

The most obvious simple geometry is a very long,
straight, resistive wire. This problem has been treated by a
number of authors.>'° To make the problem well defined,
the wire is assumed to be located normally between capaci-
tor plates of infinite area, or part of a coaxial or parallel-
wire circuit (the usual transmission-line geometries). The
general conclusion is that the surface charge density is a
linear function of the axial coordinate. The place where the
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charge density is locally zero depends upon details of the
formulation of the problem.

With guidance from this one class of quantitative solu-
tions, a number of authors have discussed qualitatively
what makes the current flow,'"!> what makes the current
turn a corner,'>'* and how crosstalk arises between
“shielded” coaxial cables.'®

III. THE CURRENT LOOP

The purpose of the present paper is to give a quantitative
and pictorial treatment of two examples from a second
class of idealized circuit geometries. The context of the dis-
cussion of elementary circuits in an introductory course
and, indeed in all of “slowly varying” circuit theory, is not
the long straight wire but rather the loop. In its primitive
form it consists of a battery connected to a resistor with
hookup wire, as in Fig. 1{a). Our aim is to see how far we
can deal quantitatively with a system approaching this ele-
mentary prototype. 'S’

The habit of drawing circuits schematically with square
corners [Fig. 1(a)] is only an esthetic convention; real cir-
cuits rarely look like that. We can better model an actual
physical circuit by supposing it to be laid out in a precisely
circular geometry, as in Fig. 1(b). For present purposes, we
may even think of the resistor as being distributed uniform-
ly around the entire loop, as in Fig. 1(c). In both frames (b)
and (c¢) of Fig. 1 we use the conventional zig-zag line to
symbolize resistance; the actual resistor that these dia-
grams represent would be a nonwiggly resistive wire (ni-
chrome, let us say) conforming to the circular geometry.

Even with these simplifications we still have a rather
intractable problem. The limit as the radius of the wire goes
to zero is not well defined. If we were to attempt to solve
Laplace’s equation for the electrostatic potential in the vi-
cinity of the wire, we would have to deal with the boundary
condition on the foroidal surface of the finite-size wire
(even if we idealize the battery as of negligible size). In prin-
ciple this problem can be solved using numerical methods
such as relaxation,'® but the boundary geometry and the
three dimensionality are very awkward. The related mag-
netic problem must also be solved if we want to find the
Poynting flux.'®

Thus we are led to restrict our consideration to the anal-
ogous two-dimensional problem. We reinterpret frames (b)
and (c) of Fig. 1 as representing cross sections of infinite
cylinders. The battery is now in the shape of a line normal
to the diagram at the left. A sheet current flows azimuthal-
ly around the cylindrical conducting sheet (“hookup wire”
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Fig. 1. The elementary current loop: (a) schematic diagram; (b) circular
loop with localized (“lumped”) resistor of angular size 2; (c) circular loop
with distributed resistor, showing polar coordinate system. The loop radi-
us is a.
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and resistor).2® We shall see that this idealized geometry is
quite tractable. Among other things, it is well behaved as
the annular thickness of the conducting sheet goes to zero.
The analysis is at the intermediate level; the resulting dia-
grams are easily understood at the introductory level.

IV. DISTRIBUTED RESISTOR

We consider the cylindrical geometry of Fig. 1(c), witha
“line’”” battery driving current azimuthally in a uniform
cylindrical resistive sheet (the zig-zag line for the resistor in
the figure is only symbolic). We use conventional cylindri-
cal coordinates r,8,z coaxial with the cylinder. The radius
of the cylinder is @; the annular thickness is negligible. The
batteryislocated at @ = + ;its terminals are at potentials

+ ¥,/2. For some purposes it will be easier to work in
Cartesian coordinates, x = r cos@ and y = r sind.

In accordance with Ohm’s law the potential at the con-

ductor is

Vir=a,@0)=V0/2r (—m<O<m). (1)
Using the well-known Fourier identity**
o k—1
0=12 z(—1) sin(k@)
K=1 k

and the cylindrical harmonics for solutions independent of
the z coordinate,?? we can immediately express the poten-
tial inside and outside in the form of the infinite series

(—7m<b<m) (2)

(— r/a)* sin(k6)
Vir<af)= — Yo 3 {=r/a) sink6) 3
(r<a;@) kzl X (3)
Virsaf)= — z (—a/r}k sin(k) @
’ T k=1
These series can be put in the closed forms®
V(r<af)=(Vy/mtan~'[rsinf /(a + r cosf)]
= (Vo/mitan™ ' [y/(a + x)] = (Vo/mg, (5)
V(r>a;0)= (Vo/mtan™"[a siné /(r + a cosf)]
=(V0/ﬂ-)tan"[ay/(x2+ax +91, (6)

where ¢ in Eq. (5) is the polar angle for an origin at the

Fig. 2. Equipotentials for (two-dimensional) current loop with distributed
resistance. The battery, of negligible size, is at the dot at the left. The lines
inside the loop can also be interpreted as lines of Poynting flux.
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Fig. 3. Electric lines of force for current loop with distributed resistance.

battery. Figure 2 shows a representative family of equipo-
tentials.

Inside the loop, the equipotentials are straight lines
(strictly, planes extending in the z dimension), as indicated
in the final form of Eq. (5). Outside, the equipotentials are
circular arcs (cylindrical surfaces), given by

(x + 1a)* + [y — da cot(mV / Vo)) = [a csc(mV / Vo). (7)
All outer equipotentials pass through the battery at

x= —a, y=0, and extrapolate through the origin
x =y =0. Thus they are symmetric about the vertical
planeatx = — la.

The electric field at any point can now be found by calcu-
lating the gradient of the potential. The lines of force are
shown in Fig. 3.2° Note that the lines of force leave the
conducting surface diagonally as explained qualitatively by
Parker!? and many others.

Inside the loop, the lines of force are circular arcs cen-
tered on the battery, given by

(x+a)+y*=(2'""ap, (8)

where N is a parameter identifying a particular field line.**
The magnitude of the field inside is*°

1E|,a = (Vo/m) (1/p), 9

where p is the polar radius measured from the battery.
Outside the loop, the lines of force are again circular
arcs, given by”

[X __a/(22~2N__ 1)]2 +y2 — [21-Na/(22~2N_ l)]Z (10)
The magnitude of the field outside is
E |50 = (Vo/7)a/1p), (11)

where r and p are the polar radii measured from the center
(axis) and from the battery, respectively. At large distances,
the system has the field of a (two-dimensional) dipole locat-
edatx = — Ja,y =0. The field just outside is similar, but
not identical, to that of a finite (two-dimensional) dipole.?®

V. SURFACE CHARGE AND POYNTING VECTOR

From the radial component of the field as ~—a we can
find the surface charge density,

o(0) = ( + JeoE, = (€Vo/2ma) tan(36)
= (€,Vo/27a) tan &, (12)

524 Am. J. Phys., Vol. 52, No. 6, June 1984

where again ¢ is the polar angle with respect to an origin at
the battery ( — 17 < ¢ < im). This same charge density exists
on both the inner and outer surfaces of the resistive conduc-
tor. Itis nolonger a linear function of the length coordinate
(perimeter) of the resistor, as it was for the long straight
conductor,®°but a tangent function that increases nonlin-
early towards the battery.

The magnetic field of this example is the elementary case
of an infinite solenoid: the magnitude of the field is uniform
inside and zero outside, and its direction is (inwardly) nor-
mal to the figure. The Poynting vector S = E X B/u, lies in
the plane of the figure, orthogonal to the E-field lines of
force, and thus coincides with the equipotentials.?’ That s,
we can interpret the equipotential lines inside the loop in
Fig. 2 as being lines of Poynting flux. The vector sense is
from the battery to the resistor with the physical interpre-
tation that the Poynting flux represents the path of trans-
port of energy from the interior of the battery as source to
the Joule (7 °R ) sink in the resistor.”® It is easy to see from
physical arguments that, since the magnetic field is con-
stant, a family of equipotentials chosen to represent equal
steps of potential (as in Fig. 2) also represents equal incre-
ments of Poynting flux, in accordance with the convention
that the density of flux lines is proportional to the local
magnitude of the Poynting vector.

Figures 2 and 3, and Eq. (12), are quantitatively correct
only for the two-dimensional (cylindrical) case. Neverthe-
less, they are not far from what one would expect for the
three-dimensional case of a loop consisting of a “point”
battery and a thin resistive wire. In that case, of course, the
magnetic field outside the loop is nonzero and of reversed
sense. Accordingly, the equipotentials outside the loop, in
the analog of Fig. 2 for the three-dimensional wire, would
also coincide with lines of Poynting flux. That is, energy is
fed to elements of the wire from all sides, including normal
to the plane of the figure, in contrast to the two-dimension-
al case where the sheet resistor is fed energy only from the
inside.

The charges on the surface of the wire provide two types
of electric field. The charges provide the field inside the
wire that drives the conduction current according to
Ohm’s law. Simultaneously the charges provide a field out-
side the wire that creates a Poynting flux. By means of this
latter field, the charges enable the wire to be a guide (in the
sense of a railroad track) for electromagnetic energy flow-
ing in the space around the wire. Intuitively one might pre-
fer the notion that electromagnetic energy is transported by
the current, inside the wires. It takes some effort to con-
vince oneself (and one’s students) that this is not the case
and that in fact the energy flows in the space outside the
wire.?®

It is easy to generalize the coincidence of equipotentials
and lines of Poynting flux for “slowly varying” systems in
which Faraday electric fields can be neglected. The electric
field at a point, being the gradient of the potential, is per-
pendicular to the equipotential surface passing through the
point. The Poynting vector, proportional to the vector pro-
duct E X B, is necessarily perpendicular to the electric field.
Therefore the Poynting vector at the point, and its exten-
sion into a continuous flux line, must lie in that equipoten-
tial surface.?” In a two-dimensional diagram of a particular
three-dimensional electric system, the equipotentials gen-
erally appear as lines, being the intersection of a family of
equipotential surfaces with the plane of the diagram. These
equipotential lines may or may not be lines of Poynting flux
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depending upon the absence or presence of a component of
the Poynting vector normal to the diagram. In many cases
of interest one can use symmetry arguments to choose a
diagram plane that is tangent to the Poynting lines, which
then coincide with the equipotential lines. An example is
the plane of any multimesh planar circuit.

V1. LUMPED RESISTOR

We now return to the case of a “lumped” resistor, as in
Fig. 1(b), and again interpret the figure as two-dimensional
(a “line” battery; currents flowing azimuthally over the
surface of a cylinder). Let the resistive conductor be limited
to the angular portion — a < 8 < a, using the same coordi-
nate system as for the distributed-resistor loop [Fig. 1(c}].
The rest of the circuit, the “hookup wires” (perfectly con-
ducting cylindrical surfaces), are equipotential with the ter-
minals of the battery.

It is not difficult to show that the potential at the loop
(r = aj, replacing Eq. (1), is given by the Fourier series

Vir=af)= S 4, sin(k6), (13)
k=1
where the coefficients are

A, = (Vo/'tr)U: (6 /a) sin(k0)d6 + f” sin(k@ )de)

= (Vy/m)[(— 1)~k + sin(ka)/k *a]. (14)

The first term of the final form of Eq. (14) is exactly that for
the distributed resistor (@—), for which we have the
closed-form formulas of Egs. (5) and {6). Thus we obtain

Vir<a;f)= (Vo/ﬂ)(tan ~1[rsin8 /(a + r cos@ )]
+ 3(r/a)* [sin(ka)/k a]sin(k6 )), (15)
k
Vir>a;0)= (Vo/fr)(tan ~!asind /(r+ a cosf)]

+ Y(a/r)* [sin(ka)/k *e]sin(k6 )). (16)

Fig. 4. Equipotentials for (two-dimensional) current loop with “lumped”
resistor (@ = 30%). The heavier curve represents the resistive portion of the
circuit. The equipotential curves inside the loop can also be interpreted as
lines of Poynting flux.
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Fig. 5. Electric lines of force for current loop with “lumped” resistor.

The remaining infinite series converge as k¥ ~2 and can be
truncated after a reasonable number of terms. We evaluat-
ed these formulas numerically for a 31X 31 grid of points
(0<7r<3a,0<0<7) and then generated Figs. 4 and 5 using
numerical potential- and gradient-tracing computer rou-
tines.* In this case the origin of the farfield dipole is only
slightly to the left of the center (axis).

If we reinterpret the equipotentials of Fig. 4 as lines of
Poynting flux, we again see energy flowing from the battery
as source to the elements of the resistor as sink, but not to
the hookup wire. :

The surface charge density (on both inner and outer sur-
faces), found from Eqs. (15) and (16), is*'

alf)= (e V0/21ra)(tan(§0 )

+ Y 2[sin{ka)/ka]sin(k@ ))

= (epVo/2ma)[tan(L0)
+ (1/a)In|sin}(@ + a)/sini(@ — a)|]. (17)

To the tangent function of Eq. (12) is added a term with
logarithmic singularities at 8§ = + a, as shown in Fig. 6.
Additional charge is required to provide the increased field
in the resistor and to remove any field parallel to the per-
fectly conducting hookup wire. Note in Fig. 5 that the lines
of force leave the resistor obliquely (there are both parallel
and normal components of field), whereas they leave the

o

R
(o]

3

Fig. 6. Surface charge density from center of resistor (¢ = 0) to upper
terminal of the battery (@ = #); dashed curve for distributed resistor [Eq.
{12)], solid curve for lumped resistor [Eq. (17)].
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hookup wire at right angles (there is only a normal compo-
nent). When we recognize that a real circuit must have fin-
ite thickness, we see that in addition to the surface charges
on the exterior there will be surface charges in the interior
of the conductor at the interfaces between the portions of
different resistivity.'*

VII. CONCLUSION

Although our calculations are only for the two-dimen-
sional (cylindrical) case, the results give considerable in-
sight into the charge distributions and configurations of
potential, electric field, and Poynting flux in elementary
current loops in the three-dimensional real world. In parti-
cular, we have emphasized the role of the Poynting flux as
carrying energy from the battery as source to elements of

the resistor as sink. The external electric field produced by

surface charges on the wires is the mechanism by which the
Poynting flux is steered or guided by the wires.

In somewhat more complicated cases, such as plane
multimesh circuits, one can sketch approximate equipoten-
tials in the spaces inside and outside the meshes in such a
way as to be consistent with the boundary conditions that
are given by the potential distribution in the circuit ele-
ments, which in turn is obtained from the Kirchhoff analy-
sis. Then these equipotential lines can be reinterpreted as
lines of Poynting flux, or an orthogonal set of electric field
lines can be sketched in. If your spatial imagination is good,
you can even conjure up mental images of systems with
three-dimensional equipotential surfaces, in which lie the
Poynting flux lines connecting batteries to resistors.
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PROBLEM: TRANSFER ORBIT TO COUNTER EARTH

Science fiction writers, such as John Norman writing in
Chronicles of Counter Earth, have described a sister planet
which shares the same orbit with the Earth. When the
Earth is at perihelion, Counter Earth is at aphelion. How
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could earthlings launch a spacecraft to explore Counter
Earth? The problem is to find the most efficient transfer
orbit—an elliptical orbit about the sun from Earth to
Counter Earth. {Solution is on page 559.)
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