Radiation

Griffiths problem 9.1: Matrix elements

It’s clear from inspection that (n|z|n) = 0 for all the traditional hydrogenic energy states. For the cross
terms, use a table of spherical harmonics and a table of Coulomb problem wavefunctions. Remember that
z = rcosf. The four matrix elements desired are
(1,0,0]z[2,0,0)
27
(1,0,0[2]2,1,+1) = ~/ dpe'® =0
0
(1,0,0]z[2,1,0)
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(1,0,0/2/2,1,—-1) = ~/ dpe® =0
0

Find the two remaining matrix elements using scaled units and p = cos 6:
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The angular integral is

The radial integral is
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So in conventional units
1 /2\° 1 27\/2
<1,O70|2§|27 1, 0> = Qo [ﬁ (3) 4'] |:\/§:| = GOT[ ~ 0.745 agp.

Griffiths problem 9.11: Decay times

General properties of lifetimes

From Griffiths, the lifetime is
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Our fist step is to convert to scaled units, using the dimensionless constant
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or, equivalently,
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This is my preferred expression for A. It applies to all states |a) and |b).
Our specific problem

Now, for our particular problem
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ToA = §a3|<b\(r/ao)la>l2~
In scaled units
[(blr]a)|* = [(blz]a)|* + [(blyla)|* + [(blz]a)]*.



We found the necessary z matrix elements in problem 9.1. Now for x = rsinf cos¢ we need matrix
elements like
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(1,0,0z|2,0,0
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(1,0,0]z|2,1,+1)
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(1,0,0/z(2,1,0) = ~ d¢ cos¢p =0
0
(1,0,0]z|2,1, -1
So we need to find
(1,0,0|z|2,1,+£1) = (1,0,0|rsinf cos$|2,1,+1)
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The radial integral we worked in problem 9.1: it is
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The angular integral is
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Now use Griffiths [9.70] to find the y matrix elements:

(' l'm/|y|ntm) = i(m —m')(n'm’|xInlm)
(1,0,0y/2,0,0) = 0
(1,0,0/y2,1,0) = 0

27
(1,0,0]y|2,1,£1) = i(£1)(1,0,0z[2,1, +1) = —i
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In summary

\(1,0,0\r\2,070>\2 = 0
215
[(1,0,0/7[2, 1,00 = [(1,0,0[2[2,1,0)* = 215
215
[(1,0,0]r[2,1,41)|? I(1,0,0[z[2,1,£1)[% + [(1,0,0]y[2, 1, £1)|> = o

Thus for the transition |2,0,0) — |1,0,0), we have A =0 so 7 = 0.

Whereas for the transition |2,1,m) — [1,0,0), we have
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A= a3 () =—a?
97 310 38
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T= (2> — 7o~ 6.59 x 10" 75 = 1.60 x 1077 s.
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Remember from the first problem set that the time required for the innermost “Bohr orbit” is 277y, whence
the decay time 7 is 1.05 x 107 “orbital periods”. If one “orbit” lasted as long as one heartbeat, then the
decay time would last about four months.

A lifetime of 1.60 x 10~? s is very short on a human time scale, but it corresponds to ten million “orbits”

or, through the heartbeat-to-orbit analogy, to about one academic semester.

Griffiths problem 9.14

(a)
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(b) The transition rates involve matrix elements like
(3,0,0[x(2,1,m)[?

and it’s clear from symmetry that these quantities are identical, so 1/3 decay through each channel. (These
matrix elements are the same as those calculated in problem 9.11, except that every Rip(r) must be re-
placed by an Rso(r). Since Rio(r) enters into only one integral, it would not be hard to do this problem
quantitatively.)



