
The WKB Approximation

Griffiths problem 8.2: Alternative derivation of WKB

(a)

ψ(x) = eif(x)/h̄

dψ

dx
=

i

h̄
f ′eif/h̄

d2ψ

dx2
=

i

h̄
f ′′eif/h̄ − 1

h̄2 f
′2eif/h̄

So the Schrödinger equation is

i

h̄
f ′′eif/h̄ − 1

h̄2 f
′2eif/h̄ = −p

2(x)

h̄2 eif/h̄

or

ih̄f ′′ − f ′2 + p2(x) = 0. (1)

(b)

f(x) = f0(x) + h̄f1(x) + h̄2f2(x) + · · ·

f ′ = f ′0 + h̄f ′1 + h̄2f ′2 + · · ·

(f ′)2 = f ′20 + h̄(2f ′0f
′
1) + h̄2(f ′21 + 2f ′0f

′
2) + · · ·

Plug these into equation (1) to find

ih̄[f ′′0 + h̄f ′′1 + · · ·]− [f ′20 + h̄(2f ′0f
′
1) + h̄2(f ′21 + 2f ′0f

′
2) + · · ·] + p2(x) = 0.

Whence, collecting like powers of h̄ (dimensional analysis!)

f ′20 = p2(x) (2)

if ′′0 = 2f ′0f
′
1 (3)

if ′′1 = f ′21 + 2f ′0f
′
2 (4)

(c) From eqn. (2), we obtain

f ′0(x) = ±p(x) (5)

f0(x) = ±
∫
p(x) dx. (6)

Meanwhile, take the derivative of (5) to find f ′′0 = ±p′(x). Plug this into the left-hand side of (3) to obtain

±ip′(x) = 2(±p(x))f ′1

f ′1(x) =
ip′(x)

2p(x)

f1(x) =
i

2

∫
p′(x)

p(x)
dx =

i

2

∫
dp

p
=
i

2
log p(x) (7)
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Meanwhile, Griffiths [8.10] is

ψ(x) = eif/h̄ ≈ C√
p(x)

e±(i/h̄)
∫

p(x) dx

Take the log of each side
i

h̄
f(x) = ± i

h̄

∫
p(x) dx+ logC − 1

2
log p(x)

and incorporate the constant “logC” into the constant of integration to find

f(x) = ±
∫
p(x) dx︸ ︷︷ ︸

same as (6)

+ i
h̄

2
log p(x)︸ ︷︷ ︸

same as (7)

Griffiths problem 8.5: The quantum bouncer

(a)

x

V(x)

0

slope = mg

E

y0

(b) Apply the Schrödinger equation

− h̄2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x)

to the quantum bouncer to find that

− h̄2

2m

d2ψ

dx2
= (E −mgx)ψ(x) for x > 0

with the boundary condition ψ(0) = 0.

Rewrite as
d2ψ

dx2
=

2m2g

h̄2

(
x− E

mg

)
ψ(x),
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change variable (shift of origin) to y = x− E/mg,

d2ψ

dy2
=

2m2g

h̄2 yψ(y),

and then change to the dimensionless variable

z =

(
2m2g

h̄2

)1/3

y

to find
d2ψ

dz2
= zψ(z).

This O.D.E. has the solution

ψ(z) = aAi(z).

[It also has the solution Bi(z), but that solution is obviously unnormalizable.]

(c) In addition, the solution must satisfy the boundary condition

ψ = 0 at x = 0, i.e. at y = −E/mg, i.e. at z =

(
2m2g

h̄2

)1/3(
− E

mg

)
.

In other words, the eigenenergies are related to the zeros z0 of Ai(z) through

E = −mg
(

h̄2

2m2g

)1/3

z0

= −( 1
2 h̄

2mg2)1/3z0

= −(3.766× 10−23 Joule) z0

The zeros of Ai(z) are tabulated in Abramowitz and Stegun, Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. (And also in the Digital Library of Mathematical Functions,

release date 2011-08-29, National Institute of Standards and Technology, http://dlmf.nist.gov/9.9#T1,

table 9.9.1.)

zero energy (Joules)

−2.338 8.805× 10−23

−4.088 15.395× 10−23

−5.521 20.791× 10−23

−6.787 25.559× 10−23

−7.944 29.916× 10−23

...
...
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Griffiths problem 8.6: The quantum bouncer in the WKB approximation

This all hinges on Griffiths [8.47]:

(n− 1
4 )πh̄ =

∫ x2

0

p(x) dx

=

∫ x2

0

√
2m(E − V (x)) dx

=

∫ E/mg

0

√
2m(E −mgx) dx [[use u = (mg/E)x]]

=
E

mg

∫ 1

0

√
2mE

√
1− u du

=

√
2E3

mg2

∫ 1

0

√
1− u du [[use y = 1− u]]

=

√
2E3

mg2

∫ 1

0

√
y dy

=

√
2E3

mg2

[
1

3/2
y3/2

]1

0

=

√
2E3

mg2

[
2

3

]
Solve for E:

E = ( 9
8π

2h̄2mg2)1/3(n− 1
4 )2/3

Plug in to build the table of values:

n energy (Joules)

1 8.738× 10−23

2 15.371× 10−23

3 20.777× 10−23

4 25.549× 10−23

5 29.910× 10−23

...
...

The last value is accurate to 2 parts in 10,000!

Griffiths problem 8.14: WKB for the Coulomb problem

The effective potential is

Veff(r) =

[
− e2

4πε0

1

r
+
h̄2

2m

`(`+ 1)

r2

]
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or, in atomic units,

Veff(r) =

[
−1

r
+

1

2

`(`+ 1)

r2

]
.

Thus

p(r) =
√

2[E − Veff(r)]

=

√
2

[
E +

1

r
− `(`+ 1)

2r2

]

=

√
2(−E)

r

√
−r2 +

r

(−E)
− `(`+ 1)

2(−E)
.

I prefer to use the constant (−E), which is positive, rather than E.

r

Veff(r)

r

p(r)

E

r1 = a r2 = b

The turning points are when p(r) = 0, that is,

−r2
tp +

rtp
(−E)

− `(`+ 1)

2(−E)
= 0,

with solutions

rtp =
1/(−E)±

√
1/(−E)2 − 4`(`+ 1)/2(−E)

2

=
1±

√
1− 2`(`+ 1)(−E)

2(−E)
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or

r1 = a =
1−

√
1− 2`(`+ 1)(−E)

2(−E)

r2 = b =
1 +

√
1− 2`(`+ 1)(−E)

2(−E)
.

This means that

p(r) =

√
2(−E)

r

√
(r − a)(b− r).

Note that for a < r < b, the quantity under the square root sign is positive, namely

(r − a)(b− r) = −r2 + (a+ b)r − ab = −r2 +
r

(−E)
− `(`+ 1)

2(−E)
.

Now we’re ready to invoke the WKB condition (in atomic units with h̄ = 1)

(n− 1
2 )π =

∫ b

a

p(r) dr

=
√

2(−E)

∫ b

a

1

r

√
(r − a)(b− r) dr

=
√

2(−E)
π

2
(
√
b−
√
a)2

=
√

2(−E)
π

2
[(a+ b)− 2

√
ab]

=
√

2(−E)
π

2

[
1

(−E)
− 2

√
`(`+ 1)

2(−E)

]

=
π

2

[√
2

(−E)
− 2
√
`(`+ 1)

]
.

Thus

2(n− 1
2 ) + 2

√
`(`+ 1) =

√
2

(−E)

4[(n− 1
2 ) +

√
`(`+ 1)]2 =

2

(−E)

(−E) =
1

2[(n− 1
2 ) +

√
`(`+ 1)]2

.

To convert from atomic units back to regular units, remember that the symbol E is shorthand for Ẽ =

E/(2 Ry) so

E = − Ry

[n− 1
2 +

√
`(`+ 1)]2

.
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