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What are effective techniques for solving physics problems? How can solving problems help you un-
derstand physics? What does your teacher expect to find in your solutions? This document answers these
questions through an example. It shows in action the principles described in the document “Solving Problems
in Physics”.

The problem

Here is our sample physics problem: (This problem is based on problem 2–37 in David Halliday, Robert
Resnick, and Jearl Walker, Fundamentals of Physics, sixth edition, 2001, page 29, which is identical to
problem 2–35 in David Halliday, Robert Resnick, Jearl Walker, and Karen Cummings, Fundamentals of
Physics, Alternate Edition, 2001, page Pr-5.)

2–35. Red light. A car moves at constant speed when a traffic light ahead turns red. After a
brief reaction time, the driver steps on the break petal and then the car slows with constant
deceleration to a stop. The car requires 56.7 meters to stop from a speed of 80.5 km/hour, and
24.4 meters to stop from a speed of 48.3 km/hour. What is the reaction time of the driver and
the rate of deceleration due to breaking? Discuss your numerical answer and the equations that
lead up to it.

Finding a solution

What kind of problem is this? It’s a hybrid of two problems: first (during the “reaction phase”) it’s a uniform
speed problem, second (during the “deceleration phase”) it’s a uniform deceleration problem. Let’s refresh
our understanding of these two types of motion through the chart below:

Relation: uniform speed (v0) uniform deceleration (d)
v to t v = v0 v = v0 − dt
x to t x = x0 + v0t x = x0 + v0t− 1

2dt
2

v to x v = v0 v2 = v2
0 − 2d(x− x0)

(The deceleration d is the negative of the acceleration a.)
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Where are we? Where do we want to go? This table outlines the situation, and at the same time defines
the variables we’ll use:

reaction phase deceleration phase
time required: tR tD

distance traveled: xR xD

We know (xR + xD) and v0 — we want to find tR and d. It’s clear that no one of the six equations above
will do the job for us.

Strategy, first try. However, we can put together equations. For example, the two “relate x to t” equations
can be applied to this situation as

xR = v0tR xD = v0tD − 1
2dt

2
D.

And these two can be summed to produce

xR + xD = v0(tR + tD)− 1
2dt

2
D.

This equation looks useful: it relates things we know (xR + xD, v0) to things we want to find (tR, d), with
only one extraneous quantity, namely tD. (By “extraneous” I mean a quantity that we don’t know and that
we don’t want to find.) You might think that we could write this equation once for the first case (56.7 meters
from 80.5 km/hour) and once for the second case (24.4 meters from 48.3 km/hour), then eliminate tD from
the two resulting equations. This strategy fails because the deceleration time tD will be different in the two
different cases.

Strategy, second try. Since we don’t know and don’t care about the two different values of tD for the two
cases, let’s not use the relation between x and t for the deceleration phase. Instead, we’ll try the relation
between v and x for this phase, namely

v2 = v2
0 − 2d(x− x0)

which in our situation becomes
0 = v2

0 − 2dxD or xD =
v2

0

2d
.

Combining this with our previous equation xR = v0tR for the reaction phase gives

xR + xD = v0tR +
v2

0

2d
.

This looks like what we need! It has no extraneous quantities. Plugging in known numbers for the two
cases will produce two equations, and solving the two equations simultaneously will find the two unknown
quantities. Let’s rush out and do it. . .

Check. No. Slow down. Before going through the labor of plugging in numbers, let’s check this equation
for reasonableness. The dimensions are correct. The result will be positive. If the reaction time tR increases,
then the stopping distance xR + xD increases. If the initial speed v0 increases, then the stopping distance
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increases. If the deceleration d increases, then the stopping distance decreases. All of this makes sense.
There’s a brief moment of panic when we ask “What if d = 0? Then the resulting stopping distance is
infinite!” But that’s okay: if there’s no deceleration, then the car never stops, so the stopping distance
should be infinite. The result passes all our checks for reasonableness.

Plug in. Now we’ve arrived at a good place to put in numbers. Those numbers are:

xR + xD v0

first case: 56.7 meters 80.5 km/hour = 22.4 m/sec
second case: 24.4 meters 48.3 km/hour = 13.4 m/sec

(Note the conversion to SI units.) So using

xR + xD = v0tR +
v2

0

2d
.

for the two cases we have (in meters and seconds):

56.7 = 22.4 tR +
(22.4)2

2d

24.4 = 13.4 tR +
(13.4)2

2d
.

Our plan is to eliminate the deceleration d first. To do this, divide the first equation by (22.4)2 and the
second by (13.4)2, giving

0.113 = 0.0446 tR +
1
2d

0.136 = 0.0746 tR +
1
2d
.

Subtraction eliminates the deceleration:
0.023 = 0.0300 tR

or
tR = 0.767 sec.

And plugging this into either of the two equations involving deceleration gives

d = 6.34 m/sec2.

Both of these numbers seem reasonable to me: the reaction time is just under one second, and the deceleration
is somewhat less than the acceleration of gravity g = 9.8 m/sec2.

[[True confession: The first time I did this problem I miscopied the stopping distance of 56.7 meters — I
wrote 76.7 meters instead. I knew I had made an error when I got a negative reaction time.]]
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Graphs. Although the problem does not require this, it is informative to sketch graphs of v versus t and
of v versus x.
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Why do these graphs show tR equal to tD but xR greater than xD? Because the car is going faster during
the reaction phase than during the deceleration phase, so if the times were equal then the reaction phase
distance would be greater.

Writing up a solution

Your write-up doesn’t need to describe all the blind alleys you went down in arriving at a solution. And
it doesn’t need to be flowing literate prose. But it does need to (1) show your reasoning, not just give
the answer; (2) describe your thoughts in words and in figures as well as in equations; and (3) outline
your checking. (When the problem statement says to “discuss”, it usually means to outline your checks for
reasonableness.)

The next page gives a full-credit answer to this problem. Things to note: (1) Define your symbols.
(2) Choose mnemonic names for your symbols. (3) Don’t present every arithmetic step (you’re not in
training to become a pocket calculator!), but do present every logical step. (4) Give numerical results with
units and with the proper number of significant digits. (5) Include your name!
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Problem 2–35: Red light. Dan Styer

Initial speed v0 maintained during reaction phase, followed by constant deceleration d.

reaction phase deceleration phase
time required: tR tD

distance traveled: xR xD

Known: (xR + xD) and v0

Desired: tR and d.

Use x = v0t during reaction phase: xR = v0tR

Use v2 = v2
0 − 2d(x− x0) during deceleration phase: 0 = v2

0 − 2dxD or xD =
v2

0

2d
.

Add these two:
xR + xD = v0tR +

v2
0

2d
.

Checks:

Dimensions okay.
Stopping distance xR + xD is positive.
Stopping distance increases with reaction time.
Stopping distance increases with initial speed.
Stopping distance decreases with deceleration.
Correct result xR + xD =∞ for special case d = 0.

Plug in numbers:

xR + xD v0

first case: 56.7 meters 80.5 km/hour = 22.4 m/sec
second case: 24.4 meters 48.3 km/hour = 13.4 m/sec

So for the two cases:

56.7 m = 22.4 m/sec tR +
(22.4 m/sec)2

2d

24.4 m = 13.4 m/sec tR +
(13.4 m/sec)2

2d
.

Solving these two equations in two unknowns gives

tR = 0.767 sec, d = 6.34 m/sec2.

Check:
Numbers are reasonable: the reaction time just under one second, deceleration somewhat less than g.
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