CHAPTER 5. DEVICES AND MATRICES

1. Introduction

In the preceding chapters we have discussed the effect of various devices (analyzers, pro-
jectors, etc.) on particular beams of polarized photons. In the present chapter this discussion
is generalized. We shall show that any device that acts only on the polarization state of a beam
can be represented by a set of four complex amplitudes, conveniently displayed in a two-by-two

array, or matrix. The four amplitudes are called matrix elements.

A single matrix describes a particular device in a particular representation; that is, it
specifies directly the effect of the device on a beam of photons in one or the other of a particu-
lar set of basis states. If the matrix elements of a device are knownin one representation, then
a simple procedure of matrix multiplication provides the matrix elements of the same device
in any other representation. Consequently, once the matrix of a device is given in any repre-
sentation, the device is uniquely characterized. Moreover, the use of matrices makes it easy
to determine the resultant effect of any sequential combination of devices whose individual ma-

trices are known.

2. The matrix of a device

A device that affects only the polarization properties of a beam may be considered a "black
box'' with a single entrance hole through which an input beam enters, and a single exit hole
through which an output beam emerges. The output beam has the same direction and energy
as the input, but the intensity or the polarization state of the emerging beam may be different.
Some devices that meet these criteria are:

open hole
beam stop (device that absorbs the entire beam)

absorbing filter (device that absorbs some photons but does not otherwise change
the characteristics of the transmitted beam)

sheet polarizer (linear or circular polarizer)
quarter wave plate
half wave plate

analyzer loop:

with both channels open,

or with just one channel open (projector),

or with neither channel open (beam stop),

or with an absorbing filter in one or both channels,
or with retarding plates in one or both channels.

any sequential combination of the devices listed above.

Suppose we are given such a device as a "black box, " and wish to investigate its properties.
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One straightforward set of experiments that we can carry out is the following (Experiments 1 to
4): Let x-polarized beams and y-polarized beams in turn enter the input channel. In each case
test the output beam first with an x-projector and then with a y-projector. One of the four ex-
periments is sketched in Fig. 1, in which the box labeled A represents the device under study.
For the other three experiments the beam stops are moved into different channels of the input
and output analyzers.

Experiments 1 to 4 determine four real numbers (probabilities). This set of numbers is
generally not sufficient to characterize the device uniquely. It is easy to exhibit two devices that
give identical results in all four experiments, and yet have a different effect on some dther inci-
dent beam. For example, suppose device A is an R-projector and device B is an L-projector.
For both of these devices, each of the experiments 1 to 4 gives a probability 1/2. Yet the two
devices are certainly distinct, as one can verify by passing an L-polarized beam through them.

The fact that experiments 1 to 4 are insufficient to characterize a device uniquely should
not be surprising in view of the discussion of Chapter 4. That discussion suggests that we des-
cribe each measurement by a complex probability amplitude, of which only the magnitude has
been determined in the present experiments. We shall see that four complex amplitudes indeed
provide the desired unambiguous characterization of a device.

The notation used for these amplitudes is a generalization of the bracket notation introduced
in the last chapter for projection amplitudes. The symbol for the amplitude must specify the ini-

tial state, the final state, and the device. We write it thus:

<final state |device| initial state > or, more briefly <f IAI i> (1)

Y

’r g~ <—

y =PROJECTOR y - POLARIZER
(y-PROJECTOR)

<
N
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>
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L

Figure 1. Experiment which measures the quantity |<y 'AI y>|2. To measure |<x|A| y>| 2,

the stop is moved from the x channel of the final analyzer to the y channel.

The experiment of Figure 1 measures the absolute square of the amplitude <y‘A| y> . There

are four such amplitudes, which are conventionally written in the form of a two-by-two array or

<x|a|x> <x|aly>
(2)
<v|A] x> <v|aly>
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CHAPTER 5. DEVICES AND MATRICES

Matrix (2) is the matrix of device A in the Xy representation. The individual amplitudes that

appear in the matrix are called matrix elements.

If four complex matrix elements are required in order to characterize a device, we must
determine eight numbers (the real and imaginary parts of each amplitude, or alternatively the
magnitude and phase of each one). This suggests that eight independent measurements are re-
quired in order to determine what is inside a "black box. " However, it turns out that one phase
can always be fixed arbitrarily., To see this, consider a general experiment of which device A
constitutes one stage (Figure 2a). The boxes that precede and follow A in the diagram are ar-
bitrary; each may contain alternative paths. The experiment remains essentially unchanged if

open analyzer loops are inserted before and after A (Figure 2b), because open analyzer loops

FINAL ANY P A ® ANY INPUT
= é
MEASUREMENT DEVICE RS DEVICE BEAM

Figure 2a. General experiment used in the proof that the matrix elements of device A always
have an overall phase undetermined by experiment.

FINAL ANY y DEVICE | v ANY INPUT
MEASUREMENT <1 pEVICE <‘x<><— A QXQQ DEVICE [< BEam —

Xy analyzer loe Xy analyzer loo
y Y P Y P

Figure 2b. A modified experiment that gives the same final measurement as the experiment
of Figure 2a. Two Xy analyzer loops have been inserted, one before A and one after A, New
symbols for analyzer loops are explained in Figure 3.

transmit beams unchanged. The amplitude for this modified experiment can be written accord-
ing to rules 1 and 2 of Chapter 4 (page 4-10). The amplitude consists of a sum of terms corres-
ponding to the various possible paths through the complete system. In each possible path the
passage through device A is represented by a matrix element of A in the Xy representation.
Hence each term in the sum contains as a factor exactly one matrix element of device A. Now
Suppose we were to replace the matrix of A by another matrix in which each element is eia
times the corresponding element of the given matrix (e is a real number). Then each term in
the sum that expresses the amplitude for the measurement in Figure 2 will be multiplied by the
same phase factor eia. When we take the absolute square of the resultant amplitude to obtain
the probability that describes the experimental result, the common phase factor disappears.

Hence the new matrix leads to exactly the same prediction as the old one for any experiment in

which a device A is involved. It follows that two matrices related by a single over-all phase
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Open analyzer loops

open Xy analyzer loop

A

open x'y' analyzer loop (tilt at angle 6 understood)

=~ R
0 <=‘> < >
Ly IS

open RL analyzer loop

Projectors (examples)

x-projector

i

o
A—(_
N
/\<
/

y'-projector (tilt at angle 6 understood)

Figure 3. Simplified symbols for open analyzer loops and projectors to be used in this chapter
and hereafter.
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CHAPTER 5. DEVICES AND MATRICES

factor describe the same device, and furthermore that we cannot hope to determine the matrix
elements of a given device except within a common phase factor. Thus, at most, seven inde-
pendent measurements are required in order to identify a device. Generally, fewer than seven
measurements suffice.

In Section 4 we shall show how the matrix elements can be evaluated by measuring the magn-
itudes of the matrix elements in two different representations. In order to carry out this pro-
gram, we need to be able to relate the matrix elements in one representation to those in another

representation. This change of basis is described in the next section.

3. Change of basis

How one determines the matrix elements of a device is discussed in Section 4. In the pre-
sent section we show how the matrix in one representation can be used to find the matrix in any
other representation. A specific example will indicate the procedure. Suppose the matrix ele-
ments of some device A are known in the xy representation, i.e., we know the values of

< |A)x>, <x|Aaly> ., <y |A |x> , and <y| A|y>. We wish to find the matrix elements of
the same device in the RL representation. The experiment sketched in Figure 4a measures the
magnitude of the element <R lA ‘R> . At the present stage we cannot directly relate the out-
come of this experiment to the known matrix elements in the xy representation. However, con-
sider the modification of this experiment shown in Figure 4b. Open analyzer loops have been in-

serted before and after device A. Since an open analyzer loop by definition has no effect on any

‘(_—R\/ A R

R-projector R-projector

. 2
Figure 4a. Experiment which measures the quantity ,<R lA ]R>l .

R-projector open open R-projector
xy analyzer xy analyzer
loop loop

Figure 4b. Addition of open xy analyzer loops to experiment of Figure 4a.
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beam, the result of the experiment of Figure 3b must be the same as the result of the experi-
ment of Figure 3a. But we know how to analyze the experiment of Figure 3b by expanding the
probability amplitude in terms of the amplitudes for all possible paths, using rules 1 and 2 of
Chapter 4. There are four paths. The amplitude for proceeding, for example, by way of the
x channel of the first analyzer loop and the y channel of the second loop is <R|y> <y|A|x><le>.

The complete expression obtained by adding the comtributions of all four paths is

<RIA|R> = <R|x> <x|A|x> <x[R> + <Rlx> <x|a|y> <y|R>

3
+<R|y> <y|Alx> <xIR> + <R|y> <y[Aly> <y|R> 3)

Equation 3, together with the three similar expression for <R IAI L>, <Ll Al R> and
<L| A [L > , obtained in the same way, express the desired matrix elements interms of the
given ones and the projection amplitudes <R’ x> , <x l L>», etc., whose values we know from
Chapter 4. We have therefore verified the assertion that, given the matrix of a device in any
representation, the effect of the device on a beam of phofons in an arbitrary state may be deter-
mined.

The equations just derived, that express the transformation of a matrix from one repre-
sentation to another, can be written compactly as a matrix multiplication

(<R|A|R> <R|A|L§>

<LlA|R> <L|AlL

_ [<RIx> <Rly>> <x|al x> <x|a| y>X:x'R> <x|L>) (4)
(<L| x> <L|y> (<y|A| x> <y|A|y> /&y |R> <y|L>
Equation 3 is one element of this matrix equation, and the other elements represent the other
three similar equations.
Notice that the first and last matrices on the right side of (4) are independent of A; they
characterize the transformation from one representation to another and are therefore called

transformation matrices. The projection amplitudes that appear in these matrices are often

called transformation coefficients. We may write Eq. 4 symbolically as

1 -
A' = UlAUZ (5)

where A is the matrix of any device in the Xy representation, A' the matrix of the same device
in the RL representation, and U1 and U2 are the transformation matrices. In our phase con-

vention these matrices are (See Table 1 of Chapter 4)

U, = i/N2 1/N2 .y - [-i/N2 i/N2
-i/N2 1/N2 & 1/N2 1/\2

It may be verified by matrix multiplication that U1 and U2 are the inverses of one another; that

(6)

* See, for example, J. R. Munkres, Elementary Linear Algebra, Addison-Wesley Publishing
Company, 1964.
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CHAPTER 5. DEVICES AND MATRICES

is U,U, = U,U, =1 (7)
where
1
I = - (8)
0 1

is the identity or unit matrix. The relation (7), verified here in a specific example, is a gener-
al one. Hence we can rewrite Eq. 5 more simply as

A= U A UL (9)

where U is the matrix previously called Ul' u-lis evidently the matrix that accomplishes
the reverse transformation, from the RL representation to the xy representation. We can ob-
tain the transformation from A'to A by multiplying both sides of (9) on the left by U~ 1 and on
the right by U, and using (7) :

A=ula v (10)
The same procedure enables us to transform a matrix from any representation to any other,

as long as the corresponding projection amplitudes are known. For example, the matrix

U(xy —x'y') that transforms from the xy representation to the x'y' representation is

x'|x> <x'|y> cos @ sin 0
y' x> <Y'|Y>> =<-Sin9cose (11)

Its inverse is SeEl e
sin® cos 6 (12)

Matrix (11) is exactly the same as the matrix that transforms the components of a vector from

U(xy —x'y')

U 1(xy—» x'y') =

U(x'y' == xy)

one set of rectangular coordinates to another set whose axes have been rotated through an angle
6. Equation 12 transforms these components back again. This was one reason for the particu-

lar choice of phase convention for projection amplitudes adopted in Chapter 4.

4, The matrix of a device

The transformation equations derived in the preceding section provide a general method
that can be used to determine the matrix of any device. Suppose that experiments 1 through 4
of Section 2 have been carried out., We then know the magnitudes of the four matrix elements

of device A in the xy representation, and can write the matrix in the form

ae b eiﬁ
A = . i xy representation (13)
ce ~de
where a, b, ¢, and d are known real numbers and e, $, ¥, and § are phases as yet undeter-
mined. If all the elements in (13) are nonzero there are four unknowns, although according to
the argument in Section 2 we expect to be able to fix the matrix elements only within a single
overall phase. If one or more of the matrix elements vanishes, the number of unknowns is

reduced accordingly.

Suppose we carry out four more experiments like 1 through 4, this time using some other
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pair of basis states, e.g., R and L. The new set of measurements determines the magnitudes
of four new matrix elements, viz. <R‘ A |L> » etc. But Eq. 4 expresses these matrix ele-
ments in terms of the matrix elements in the xy representation, plus known transformation
matrices. By taking the absolute squares of the four equations contained in this matrix equa-
tion, we obtain four equations in which the only unknowns are the desired phases. There must
be at least one redundant equation in the set; otherwise we could determine all phases uniquely.
If the equations have a unique solution for the relative phases, our task is accomplished. Some-
times there is not a unique solution (See example 2c below). In that case a different repre-
sentation must be used.

If all the elements in the original matrix (13) are non- zero, the algebraic solution for the
phases may be rather complicated. For example, the equation one obtains by substituting
(6) and (13) into (3) and squaring is

'<RIA| R>| . = -‘%laeia + ibei‘3 - iceix+ deiS e (14)

When expanded, Eq. 14 contains sines and cosines of the various relative phases e - B, a -7,
etc. However, for most of the devices with which we are concerned, there are sufficient zero
matrix elements to make the determination of phases quite simple. A few examples illustrate

the procedure.

Example 1. Projectors

If the device in question is an x-projector, the results of experiments 1 through 4 are very
simple. Three of the measurements yield the result zero, and the fourth gives probability

unity (Figure 5). Letting Px denote the x-projector, we can write

l<x lPx|x> |2 =01 I <x 'Px ly> |Z = '<y, Px,x>,2 = ,<y Iley>|2 =0 (15)
For this device there are no unknown phases at all to be discussed. The only quantity unspec=
ified is the phase of the single nonzero matrix element <x lPx' x>, But this constitutes only an
over-allphase for the entire matrix which, as we have already pointed out, cannot be determined.
Therefore we may fix this phase at our pleasure. The simplest choice is to put the matrix ele-

ment equal to unity. Thus
i <x,lex> <x|Px|y> i 1 0 b

<y|P_|x> <y[P_|y> o 0

Y //- ~
7 \\

—— — s </
stop

Figure 5. Experiment to measure I<y IA Ix >
there is zero output.
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CHAPTER 5. DEVICES AND MATRICES

This is a rather trivial-appearing result. However, using the results of the preceding sections,
we can immediately express PX in any other representation, in which the matrix has a far less

trivial appearance. For example, using Eqs. 5 and 6, we find

X

V/2: =idf2
o (_1/2 i RL representation (17)

and similarly cosze ~cos 6 sin 8)\

P
X

2 x'y' representation (18)
-cos 8 sin ®) sin 6

From the definition of a projector, it follows that the matrix of any projector is given by
Eq. 16 in the representation in which the state defined by the projector is one of the basis

states. Thus for an R-projector, denoted by PR’ we can write immediately

<R[Pp|R>  <r[P_ >\ 1o B RE
PR = = representation
<L|PR|R> <L|PR > 0 0 (19)
and, using Eq. 5, 1/2 -i/Z
PR = i/2 1/2 Xy representation (20)

Example 2.
The next simplest case is one in which two matrix elements are zero. Suppose that for

some device A, experiments 1 to 4 of Section 2 give the following results:

2 2 2 2
,<xlA|x>| = '(yIA'y> I =i 1 l<x,A|y>| =‘<ylA|x>' =0 (21)
That is, device A transmits both state x and state y with undiminished intensity. The device
might be an open hole; but, as we shall see, it need not be. From the results (21), we write

the general matrix (13) as ie \
e 0 .
A ) Xy representation (22)

0 ei6

There is only one relative phase to be determined. To do so, we measure the magnitudes of the
matrix elements in the RL representation by appropriate modification of experiments 1 through

4. Equation 14 with b and c set equal to zero reads

2
,<R'A|R>, = (1/2) [1+cos(<><- 6)] (23)
and one can obtain three similar equations f0r<R|A |L> » etc., all of which involve the phase
difference o - &§. We consider three alternative results.
2

Case 2a: l<R|A|R> l = 1. The device transmits an R-polarized beam with undiminished

—— . .
intensity. Equation 23 tells us that cos(e - §) = 1, which implies e'® = ela. We can put this
common phase factor equal to unity. Then the device in question has the matrix

1 0
I = Xy representation (24)

5-9



QUANT UM MECHANICS

which is the unit matrix. The device must be an open hole or an open analyzer loop or some
such similar device. The experiments we have performed (notice they are five in number) are
sufficient to determine that the device must transmit any other incident beam unchanged. When
the unit matrix is transformed to any other representation, its form remains unchanged. No
other matrix has this property.

Case 2b. |<R|A|R>, e 0. In this case we find from Eq. 23 that cos(a - §) = -1, which

implies that ela = -el(’5 The matrix can be written
1 0
A = Xy representation (25)
0 -1

One device that has this matrix is a half-wave plate with a particular orientation (see the exer-
cises).

Case 2c. Quarter wave plate. Suppose the device A happens to be a quarter wave plate

with its fast axis oriented along the x direction. (See Chapter 3, Box 2 for definition and pro-
perties of this device.) From the properties of the quarter wave plate we can predict, and ex-
periment readily verifies, that experiments 1 through 4 in the xy representation yield just the
results (21). Thus the matrix of A must be of the form (22). Moreover, we can also predict
that the second set of experiments, with the RL representation, yield the following results:
,<R’A,R>, 2 =l<R|A]L>| 2 ='<L]A,R>] 2 =‘|-<L|A|L> e % (26)

These predictions are likewise verifiable by experiment. When we substitute these values in

Eq. (23) and the three other similar equations, we find that

cos(a - 8§) =0 (27)
which leads to two distinct solutions for the phase factors:
18 . e’ (28a)
and SLR R (28b)

No further phase information can be gleaned from these experiments; we therefore cannot decide,

on the basis of these data, whether the matrix of A ought to be writte

1 0

(29a)
0 i

or 1 0 (29b)
0 -i

In point of fact, (29b) is the correct matrix of A; (29a) represents a quarter wave plate with its
fast axis along the y direction, which is a different device even though it gives the same results,
(23) and (26), in both sets of experiments we have considered. An additional measurement is re-
quired in order to determine the correct matrices for these devices. (See the exercises.)

The example of a quarter wave plate illustrates that measurement of the magnitudes of the
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matrix elements in any two representations will not, in general, fix the matrix of device (even
within an over-all phase). However, one can always find two particular representations that
lead to a unique determination. As already mentioned, the algebra can get quite complicated

if an inconvenient choice is made.

It is possible--and is sometimes useful--to present a matrix in a mixed representation,

that is, a form in which the input state is in a different representation than the output state.
For example, the matrix element <R ’le x> for an x-projector is in a mixed representation
of linear and circular polarization states. Calculation of a matrix in a mixed representation
can be done by applying only one transformation matrix (Eq. 9) either the one on the left or the
one on the right, depending on the mixture desired. For example, to calculate <R| Px’ x>
we have
<R|lex> = <R|x> <x,PXlx> + <R|y><y| le x> = i/N2 (30)
It is important to notice that not every two-by-two matrix corresponds to a physical device.
If we confine ourselves to passive devices, that is, ones that do not manufacture photons, then
at least one limitation is clear: for any input beam, the sum of the intensities of the two states
in the output beam is no greater than the intensity of the input. This means that the matrix

elements must satisfy the following inequality
: : 2
z :’<JIA‘1>I o (31)
j

Here i denotes any state whatever, and the sum runs over the pair of basis states in any re-
presentation. Equation 31 implies that the sum of the absolute squares ofthe elements in any
column of a matrix is at most unity. It is also true that the absolute squares of the elements in

any row can also sum to no more than unity : E Fleli > '2 £ 1 (32)

1

It is worth while remarking that matrices can be used also in a completely classical des-
cription of the devices we have been discus sing. An explanation of the classical meaning of

these matrices--called Jones matrices--and a table of matrices for different devices (including

those treated as examples here) appears in the book by Shurcliff and Ballard. *

5. The matrix for a series of consecutive devices

Let a beam pass sequentially through devices A and B (Figure 6). Suppose that matrix ele-

* Shurcliff and Ballard, op. cit. (reference on page 2-1), pages 80, 89, and 94.
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ments for the two separate devices are known in, say, the xy representation. There is a simple
way to summarize the net result of these two devices in series. In particular, we can find a
matrix for the combination, treated as a single '"device C'" (dashed line, Figure 6). Symboli-
cally, add an open xy analyzer loop between A and B, as shown in Figure 7. There are two

alternative paths through this system. The resultant amplitude is simply <x|C|x>

<xlclx> = <x|Blx> <x|alx> + <x|Bly> <v|a]x> (33)
[ 0 o o i A
! :
Rl A <

"single device c"
Figure 6. The sequential devices A and B viewed as a single device C (dashed line).

A S R N S 1
o | | _?
y // :_ B y A ! zy”
X | X : : |
| | X
N QRIS Rapt . L J
"device C"

Figure 7. Thought experiment useful in finding the matrix elements of C from the matrix
elements of A and B.

All amplitudes on the right side of this equation are assumed known. Therefore the matrix ele-
ment <x lC'x> for the single device C is now known., The remaining three matrix elements
are found from experiments sin ilar to that of Figure 7. These four equations for the matrix

elements of C can be summarized in terms of the matrix multiplication of matrices B and A:

<.x' C‘x> <x|Cly> <x|B|x> <x|B|y> <x|A|x> <x'A'y> (34)
<y] C'x> <YlC|Y> <Y|B|x> <YlB_Iy> <y|A|x> <y|A|y>
or, more simply
C = BA (35)
The last equation is true for any single representation. Since matrices do not always commute
(AB not necessarily equal to BA), one must be careful to write the matrices in the same order as
the devices. The beam direction for most of the figures in this book has been chosen from right
to left, so the order of devices is the same as the order of multiplication of matrices for the de-
vices.
Three or more devices in series are easily described as a single device using a simple ex-
tension of the method of matrix multiplication. The matrix for the combined device is the pro-
duct of all the individual matrices in the correct order.

As an example, consider the combination of devices shown in Figure 8. Using the matrices
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of the individual devices derived in Section 4, we find that the matrix for the combination of de-

vices operating in the order shown in the figure is (in the Xy representation)

1/2 -i/2 1 o0 1/2 0

BA = = (36)
i/2 1/2 0 o0 i/2 0

If the order of the devices is reversed, the matrix of the combination is

1 o0\ /1/2 -i/2 1/2 -i/2

AB = = (37)
0 0/ \i/2 1/2 0 0

other examples are presented in the exercises.

B A

A
/N
N

R- PROJECTOR X-PROJECTOR

Figure 8. A series of devices: an example of the series shown in Figure 6.



CHAPTER 6. STATE VECTORS AND OPERATORS

1. Introduction

This chapter completes our presentation of the formal apparatus of quantum mechanics.
No new experiments are considered in this chapter, but the experiments of preceding chapters

are reinterpreted in terms of two powerful concepts: state vector and operator. The state

vector concept is not only useful for describing photon states but also will be immediately ap-
plicable to atomic beam states, as described in Chapter 7. *

A state vector receives its name from the strong analogy between its properties and those
of an ordinary unit vector. The components of an ordinary unit vector are equal to its projec-
tions on a given set of mutually perpendicular axes. The components of a state vector are its
projection amplitudes onto a given set of mutually orthogonal basis states. The ordinary unit
vector provides an abstract description of a directed quantity independent of the axes along
which its components are measured. The state vector provides an abstract description of a
state independent of the basis states in which its projection amplitudes are measured.

An operator provides an abstract description of a device. An operator changes one state
vector into another. The matrices introduced in the preceding chapter constitute a concrete
representation of operators. In a similar manner row and column matrices constitute a con-

crete representation of the abstract state vectors.

2. The state vector

For a heuristic introduction to the state vector, we utilize once more the familiar thought-
experiment of Figure 1. Let ¥ denote any state of photon polarization (that is, ¥ can stand
for y or y'or R, etc.). With the help of the open analyzer loop, we can express the pro-

jection amplitude from the state ¥ to the state of linear polarization y' as:
<Y |¥>= <y y><yes <y x><x|y> (1a)

incident beam in arbitrary
<

Y/—\
\_/ N polari;ation state ¥
X

Figure 1. Experiment used to introduce the state vector.

* In contrast the operator concept will not be used again for several chapters, so may be
omitted from a first reading of this chapter if the instructor so desires.
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Alternatively, by replacing the final projector in Figure 1 with a differently oriented linear pro-

jector or with an R-projector we obtain similar equations

<y"[¥> <V'ly>s<ylY> + <y x> <x¥> (1b)
<R [¢> <R|y><ylf>t <R|x><x|¢> (Lc)

The only difference between the three experiments above is the identity of the final projector,

The only difference in the corresponding equations is the symbol that represents the final pro-
jector in the appropriate amplitudes. We can summarize all three equations (as well as all

other equations of the same type )by writing

<= <ol < xo<vs @)
The blank spaces in Eq. 2 may be filled in by any symbol that represents a photon polarization
state (the same symbol goes in all the blanks). The resulting equation then specifies the pro-
jection amplitude from the state ¥ to the state in question, expressed in terms of the projec-
tion amplitudes from ¥ to the x and y basis states. The notation can be abbreviated by re-

moving the angular braces which enclose the blanks; thus instead of (2) we write

[4> = Jy> <vle> +  |x<x|e> (3)
For example, if -}L stands for the state R, Eq. 3 reads

|R> =[x><x [R> + |y> <y [R> = | x> (-i/V2) + | y> Q/V2) (4)
The symbol ,}‘) is called the state vector for the state y . The analogy to ordinary vectors is
elaborated below. Because the ‘> is the right half of the Dirac bracket < l >, it is sometimes
called a ket or ket vector.

One may of course regard Eq. 3 as merely a shorthand form of (2), which in turn represents
(la), (1b), (lc) and all such equations. However, a more significant meaning can be attached to
Eq. 2. This equation corresponds to the right-hand half of Figure 1: a beam in state }é and an
analyzer loop. The analyzer loop has no net effect on the beam, merely analyzing the beam into
the x,y basis states and then recombining them again. In some sense Eq. 3 therefore stands for
the state Y. We regard the state vector ]ll/> as an abstract symbol for the state ¥. The
right side of (3) expresses this state vector in terms of the state vectors 'x> and |y> that
symbolize the basis states x and y. We can just as well use some other analyzer loop in Figure
1, for instance an x'y' analyzer loop or an RL analyzer loop. In this way we can express the
state vector '\P> in terms of the set of state vectors Ix'> and ,y'> or the set of state vectors

‘R> and "L > . Repeating the argument that lead to (3) we have, in these two cases

|¥>= IX'> <x'l¢> + |y'><y'| ¥> (5)
[¢>= |R> <R¥> + |L><L|¥> (6)
The expressions (3), (5), and (6) are all analogous to the expansion of an ordinary vector in
terms of unit vectors that point along mutually perpendicular axes. The analogy is most complete

- - . . . . . . A .
if we limit consideration to unit vectors in a plane. Such a unit vector A can be written
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/\ \
A x

2\
Ax +y Ay (7)
where /:?and/? denote unit vectors in the x and y directions, and Ax and Ay are the components

of A along these axes. Alternatively one can expand the same unit vector ‘A in terms of some

other pair of perpendicular unit vectors x' and y':

/\

A ERK
X

A
+y'

Ay, (8)

The right sides of (7) and (8) represent the same vector in two different explicit ways. In con-

trast the symbol ﬁ on the left sides of (7) and (8) is an abstract way of describing the vector
without reference to any particular set of axes.

The symbol |¢> is an abstract symbol for the quantum state in the same way as the symbol
1\\ is an abstract symbol for a unit vector. The state vector |\0> is independent of any particu-
lar representation. The '"components'' of l¢> in a particular representation are, as Eqgs. 3, 5,
and 6 indicate, the projection amplitudes from the state ¥ to the basis states of the representa-
tion. The projection amplitudes to any complete set of basis states uniquely define the state
(once the phase convention has been fixed) just as the components of a vector A with respect to
a given set of axes uniquely define the vector.

Notice that the projection amplitudes from any state ¥ to the basis states x and y satisfy

the relation ("'completeness:" page 3-27):

2 2
kx| v>]% + |<y > =1 )
just as the components of any unit vector \ along any pair of axes satisfy the relation ("'unit
1ny.
vector'): A Z+A 2 e (10)
x y

But, of course, the '"components' of a state vector are in general complex.

The analogy between state vectors and unit vectors extends even further. If the components
of a unit vector along a given set of axes are known, then the components along any other set of
axes can be determined. Specifically, if the x'y' axes make an angle 6 with the xy axes (Fig-

ure 2), then the components of A along the primed axes are:

A, = cosB®A +sinB8 A
X x y
(11)
A, = -sin8 A +cosB8 A
y X y
2 A
i ,// AN
/,/’/ E ‘\\
T .
- } \
|
® |
I
e
{ X

N
Figure 2. Relations between components of A in primed and unprimed coordinate systems.
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The transformation law (11) is an essential property of vectors: In fact, it can even be taken as
the definition of an ordinary vector: an ordinary vector is a quantity with two comporents that
transform under a rotation of axes according to Eq. (11). The statement that some physical
quantity like force or momentum is a vector means that its components obey the transformation
law (11). It follows that if a physical law is expressed as a relation between vector quantities,
the law is automatically invariant under rotations. (All the terms transform in exactly the same
way. )

The components of a state vector likewise obey well-defined transformation laws. From
simple experiments with analyzer loops we can, for example, derive the following transforma-
tion laws;

a) transformation from one set of linearly polarized basis states to another such set. We have

already seen that

<x'|¥> = <x|x> <x|¥> + <x'|y> <y|¥>

<V'W> = <y |xE> <x¥> + <y'|y> <v¥>
Therefore, using Table 1 of Chapter 4 we have

<x'|‘//> = cos 6 <xlll/> + sin 6 <Yl'}é>

<y'|¢> = - sin® <x|P> + cos 0 <v|¥> e
b) transformation from linearly polarized basis states to circularly polarized basis states:
Wekaow <R|\//> =<R]x><x|')la>+ <R|y>< y|¢>

<L[¥> =<Ll|x><x|y>+ <L|y><y|¥>
Thus

<Rl¥> = (i/N2) <x [¥ >+ (1/N2) <y|¥>

<LIV> = (-i/N2) <x|¥> + (1/N2) <y|¥> (13)

The transformation law (12) is precisely the same as (11): The components of a photon state
vector with respect to linear polarization basis states transform under a rotation of axes ex-
actly as do the components of a vector in 2-space. This identity holds only with the particular
phase convention we have adopted. (It is one of the reasons for choosing this convention.) But
there is no transformation of vectors that corresponds to the transformation (13) from linear
to circular polarization. In this respect state vectors are more general than ordinary unit
vectors. The important point is that a well-defined transformation law exists for any pair of
representations. Because of this, any equation relating state vectors is invariant to a change of
basis.

The transformation laws for projection amplitudes, Eqs. 12 and 13, can be expressed con=-

veniently in matrix form. We define a column matrix (i.e., a matrix with a single column and

two rows)to describe the state vector h&>‘in a particular representation. The elements of this
column matrix are the pair of projection amplitudes from state ¥ to the basis states of the re-

presentation. For example the state vector |'¢>is represented by any of the column matrices
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<x [y > <x'|y> <R[¥ >
or or
<y |¥> <'|¥> <L|Y >
In terms of these column matrices, the transformation equations (12) and (13) take the form of
matrix multiplications
<x'|y > . <x|Y >
"w ) cos 8 sin 6 ) I (14)
<Y||v N -sin 8 cos 6 / <y|¥>
<Rl‘¢> i/N2 1/N2 <x|¥>
5 1
<L|p> SN2 1N <y |p> (o)

The two-by-two matrix in Eq. 14 is precisely the same as the transformation matrix U(xy—x'y')

used in Chapter 5 to describe the transformation of the matrix of a device from one representa-

tion to another (Eq. 11 of Chapter 5). Similarly, the two-by-two matrix in (15) is U(xy =RL)

given in Eq. 6 of Chapter 5. Notice the difference in form between transformation equations

in this chapter and transformation equations in Chapter 5. In transforming the components of a

state vector only a single transformation matrix U appears. In transforming a matrix, the

matrix to be transformed is ""sandwiched' between the transformation matrices U and U-1l,

A final streamlining of the notation is possible with the help of the summation symbol.

We

can write a single equation which expresses a state vector in terms of an arbitrary set of basis

states:
19> = 2 lis<il¥>
J

(16)

The dummy index j in the summation of Eq. 16 represents, in turn, the two symbols that des-

cribe the orthogonal basis states in any representation: e.g., x and y (this gives Eq. 3), or R

and L (this gives Eq. 6), or x' and y' (this gives Eq. 5).

3. The dual state vector

Suppose we ''turn around' the experiment in Figure 1, i.e., start with a beam which is

Yl

polarized, pass it through an open xy analyzer loop and then through a "ﬂ -projector." (Fig-

ure 2.) (We saw in Chapter 3 that a projector must exist for any state.) This thought-experi-

ment enables us to express the amplitude <’I/|y'> as

<Y|V'> = <Ylyd<y|y'> + <Y x><x|y>
Y
INCIDEDIT BEAM
— < {¥-PROJECTOR T
X

Figure 3. Thought-experiment used to introduce the dual state vector.
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We can now repeat the argument of Section 2, imagining other beams incident on the same ap-
paratus, and write a symbolic equation that summarizes all such similar experiments

<kl > = <Fy> <y >+ <Plocx| > (18)
As in Eq. 2, the blank spaces are to be filled by the symbol representing the incident beam.

Equation 18 can be abbreviated in the form

<Pl = <Hly> <y + <P | =><x| (19)
The entire discussion of state vectors in Section 2 applies equally well to the symbol < |
introduced in Eq. 19. <'¢' represents the state of ‘& polarization and has properties similar to

those of a state vector. The symbol <ﬂ is called the dual state vector, or more simply the dual

vector. The word dual comes from the mathematical theory of vector spaces.* Because it
forms the front part of the Dirac bracket, the dual state vector is sometimes called the bra
vector,

The components of the dual vector <‘¢l in the xy representation are the probability ampli-
tudes found in Eq. 19: <¢|y> and <¢|x>. These are not the same as <y!‘¢>and <x|¢>res-
pectively, the components of the vectorl 3‘ > that describes the same state. Rather, the com-

ponents of the state vector and the dual vector for the same state are complex conjugates of one

another (Eq. 24 of Chapter 4). Likewise the transformation laws for components of a dual vec-
tor are related to, but not identical with, the transformation laws for components of a state vec-
tor. Instead of Eqs. 12 and 13 one obtains by the same procedure, for transformation to the

x'y' basis:

<¥[x> = <Plx><x|x'> + <Ply><yx'>
<Yly's = <¥|x><x|y'> +<¥ly><yly' >
therefore (Table 1 of Chapter 4)

<Y lx'> = <¢lx>cose+<1l|y>sine

<¥ ly'> = <¢|x>(-sin @) + <¥ ‘Y>cos e (20)
and for transformation to the RL basis

<Y IR> = <¥|x><x|R> +<¥ |y><y|R>

<Y|L> = <¥|x><x|L> +<¥|ys<y|L >
therefore

<P IR> = <y| x> (-i/N2) +<¢| y> (1/N2) o

<V |L> =<¥|x>E/N2) +<y|y > (1/N2)
These equations can, like (12) and (13), be written conveniently in matrix form. However, in
this case the dual vector must be written as a row matrix (one row, two columns) rather than
a column matrix, For example, the dual vector <‘¢| is represented by the following row mat-

rices in different representations:

* Actually each of the vectors <'¢| and H>are duals of each other and both are state vectors,
since they both represent the state "¢ . In order to be specific in the present treatment, we
usually call the bra vector<¢ the dual vector, leaving the label vector or state vector for
the ket |¥>. ca-
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( <y |x> <¢|Y>) or( <Y x> <Yly'> > or (<V|R> <’¢|L>)

In terms of these row matrices, Eqs. 20 and 21 are represented by the matrix equations

< <ylx'> <’¢|y'>) = (<3"x> <¢|Y>> (0059 SR ) (22)
sin © cos 6

<<¢|R> <¢|L>> =( <#lx> <‘¢|y>> -i/N2 i/N2 g

1/N2 1/N2
Notice that according to the laws of matrix multiplication, a two-by-two matrix can only post-
multiply a one-by-two row matrix; that is, the order of the matrices must be as it appears in
(22) and (23). The transformation matrices in these expressions are the adjoints* of the U

matrices of Eqs. 14 and 15. Thus eqgs. (22) and (23) can be written as

<<’¢ | x> <')l|y‘>) = ( <¥|x> <'¢|y>> UT(xy —x'y") (24)
(<¢|R> <¢|L>> = ( <¢‘X> <¥|v>) Ut (xy — RL) (25)

Analogously to Eq. 16 we can summarize Eqs. 20 and 21 and all similar equations using the

summation symbol

<¥|-= Z<¢|j><j|' (26)

J

Here, as before, the dummy index j represents, in turn, the two symbols that describe the

orthogonal basis states in any representation.

4. Inner products

Equation 3 expresses the state vector |'¢> in terms of the xy basis: |x> and |y>.
Equation 19 performs a similar task for the dual vector <Y/ . In both of these equations
there are coefficients that are numbers. State vectors, as we have already emphasized, are
not numbers but entirely different mathematical entities. An ordinary vector is also a mathe-
matical entity different from a number. In vector algebra, however, there is a way of obtaining

a number from two vectors by defining their inner or scalar product. The scalar product is us-

A A

ually called the dot product and written A - ]5’ For unit vectors A and B in two dimensions
h A
e Gane A.B =48 vAB (27)
X x vy
The scalar product is useful because it is invariant under rotation, that is

AB +AB =A B + A B

X x vy

xl x !

y' (28)

as can be verified directly using the transformation law (11). Moreover, the coefficients in the

* The adjoint of a matrix A, written AT » is obtained by interchanging the rows and columns and
taking the complex conjugate of all the elements; that is, A ij = (A,i) .. It happens that for
the matrices involved here, the adjoint is identical to the inverse.* A matrix with this proper-
ty is called unitary. The transformations we are discussing are all unitary transformations.
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expansion of a vector in a given coordinate system, i.e., the components of a vector along a

particular pair of axes (Eqs. 7 and 8), may be expressed as the scalar products of the vector

with unit vectors that point along the coordinate axes. For example

Ax = x-/_l'\\ =/A\/)?
el (29)
A=% R =2.%
Ayl=/y\-z\=§\\-§r}

(According to the definition (27) the order of factors in a scalar product of ordinary vectors is

immaterial.) Thus Eq. 27 may be written:

R-B=R-DR-D+A-DG D (30)

We already know how to write an expression for state vectors very much like Eq. 30.

Figure 4 shows an experiment in which an input beam in state ¢ is projected into state ¢

The insertion of an analyzer loop does not change the experimental outcome but allows the ex-

pansion of <@ ¥>in the xy representation.

<B|¥> = <B|x> <x|¥> + <P y> <y |¥> (31)
QUTPUT INPUT
BEAM Y BEAM
< $-PROJECTOR ~<
IN STATE ¢ X IN STATE Y
Xy ANALYZER
Y Loor

Figure 4. Experiment used to derive Equation 31.

Equation 31 has a form very similar to that of Eq. 30. Indeed, we can interpret Eq. 31 as an

inner product between the dual vector <¢| and the vector l}é).. Suppose both <¢| and |‘¢ >

are expanded in the xy basis (see Egs. 3 and 19)

<@l = <g|x> <x| + <d|y> <yl

1¥> = > <x|¥>+ |y><y|P>
If we define inner product by the projection amplitude, the inner product of <l and 'V> is

<?|y> [<¢|x> <x| + <g|y> <y|][lX> <x|¥>+ |y> <y |¢>]
<P > <xlx> <x| Y5>+ <g|xy <x|y> <y |¥>
t <Ply> <ylx><x|y>+ <dly> avly><y|¥> 22}

Because of orthogonality between states x and y, this reduces to Eq. 31.

This second development of Eq. 31 justifies our speaking of the projection amplitude <¢‘ ¢>

as the inner product of a dual state vector <¢| and a state vector |}4> The inner product in a

representation other than xy can be derived by considering alternative experiments in which the

Xy analyzer loop in Figure 4 is replaced with an x'y' analyzer loop or with an RL analyzer loop.
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We can summarize all such experiments and inner products between<¢| and|¢> in all represent-

ations using the general expansions (16) and (26)

<gl¥> - <Z<¢|jl><j1| )(}: |j2><j2|¢>) =ZZ <alip<ig|i> <i, | ¥>
J; iy 3y

J
- (33)

where the indices jl and jz run over the basis states of any representation (but the same repre-

sentation for both sums). * The orthogonality of basis states of a given representation can be ex-
pressed by the relation

- - = = 34

<ili> 6j1j2 { 2 (34)

Hence the double sum (33) reduces to a single sum

<gl¥> =Z<¢‘j> <il¥> (35)
J

In equation 35 the summation extends over any pair of basis states whatever. This demonstrates
explicitly the invariance of the inner product under a change of representation.

The inner product can also be expressed using the row- and column-matrix notation.
<P\ Y> = <<¢|x> <¢ly>> <x | ¥>

<v |¥>

Notice that the product of a one-by-two row matrix and a two-by-one column matrix in that order

(36)

is a one-by-one matrix, i.e., a number. The invariance of the inner product is assured by the
transformation laws (14), (22), etc., and the fact that the transformation matrices are unitary.
For example, if we transform the row and column matrices in (36) to the RL representation ac-

cording to Eqs. 15 and 23, we obtain
<<¢|R> <¢[L>> <R [Y>

<L (¥ >
= (<9x> <@|y>) 0" by—RL) U Gy—RL) fax| Y5 | = (<> <¢|y9 <|¥>\ 67

<y|¥> <y| ¥>

as may be verified by explicitly multiplying the U matrices.

Notice that the inner product involves one bra vector and one ket vector in the correct order
to make a completed bracket. The order of the symbols in the bracket is significant, since
<¢| '5{/> is not, in general, equal to <¢| @ > but is instead its complex conjugate. In a general
vector space an inner product is defined between a vector and a dual vector. In the particular
case of ordinary vectors the components of the dual of a vector A are the same as the compo-

nents of A, so the order in the inner product does not matter.

% In general, in a multiple sum, we shall use jl’ j2» etc., when the indices are to run over
the basis states of the same representation. We will use i, j, k, etc., when the indices are
to run over basis states of different representations.
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5. Operators

We have seen in the preceding sections how a state vector provides an abstract description
of a photon state, whereas row and column matrices provide a concrete description of that state
in a particular representation. In Chapter 5 we showed that a two-by-two matrix provides a

description of a device in a particular representation. We now introduce the concept of an

operator, which describes a device independently of any representation.

Suppose a beam of photons in state "b is incident on device A, and the output beam is moni-
tored with a projector for some other state (J. Let open xy analyzer loops be inserted before
and after device A as shown in Figure 5. These loops will not affect the outcome of the experi-
ment. The probability amplitude that describes the experiment can be written in terms of the
matrix elements of device A as follows:

<Hlal¥> = <glx>ax|alx<x|Y> + <dlx><x|a|ys <y ¥>
+ <Bly><y|alx><x|Y> + <P|y> <y|Aly> <v| %>

Since the arbitrary states @ and % are not necessarily basis states of the same representa-

(38)

tion, the amplitude <@ IA‘¢> is not necessarily a matrix element of A in any single repre-

sentation.
oUTPUT v INCIDENT
BEAM Y BEAM
IN STATE @ PR, 3 A IN STATE ¥

Figure 5. Experiment used to introduce the operator A.

We have seen in Section 4 that every projection amplitude can be thought of as the inner pro-
duct of a dual vector and a state vector. Each term on the right side of Eq. 38 contains as a
factor the inner product of <¢| with one of the basis vectors ' xpor 'y> . The entire right
side is therefore the inner product of <¢| and a linear combination of |x> and | y>. The
left side of (38) must also be the inner product of <¢| with something. We interpret the ampli-
tude <¢lA|'¥’> as the inner product of <(21 with A '¢>, which represents a linear combin-

ation of state vectors. Thus we write

Aly> = 'x>[<xlA|x><x|'¢> + <x|A|y> <y|'¢>]
* |Y>L<Y|A|X> <x|y> + <y|A[y> <V|¢>] (39)
Here the expressions enclosed in square brackets stand for complex numbers.

Equation 39 describes the beam that emerges from device A when the input beam consists of
photons in state 3. But this state is arbitrary. We may formally delete the symbol l'{l’>from
the right hand end of every term in 39, and obtain the expression

A = |x> <x|A|x><x| + lx><x|Aly><Y{
+ > <y|A[x><x| 4 |y><y|Aly><y| (40)
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Equation 40 may be regarded as merely a shorthand for Eq. 39. However, just as in the
case of Eq. (3), one can attach a deeper significance to it. The symbol A on the left side of
(40) can be considered an abstract operator that represents the device. The right side is a
specific representation of this operator. An alternative representation of the same operator
is obtained by replacing the xy analyzer loops in Figure 5 with RL analyzer loops. One then
obtains by an.identical procedure:

A = |R><R|A[R><R| + |R><R|A]L> <1l + |L><L|A|R> <R| +|L><L|a[L><]
(41)
Equations (40) and (41) can be written compactly as double summations:
A = Z ,i1> <illAliZ><iZI (42)
1’2
If the dummy indices il, i2 in the sums of Eq. 42 run over the values x, y, one gets Eq. 40
when the dummy indices run over the values R, L, one gets Eq. 41. But clearly any open ana-
lyzer loops could have been used in the experiment of Figure 5. Hence the indices in (42) can
run over any complete set of basis states. Equation 42, with the basis states unspecified, pro-
vides a completely general representation of the operator A. When specific calculation is re-
quired, we must of course specify some particular representation.

What sort of mathematical object is an operator ? Clearly it is not a number. Neither is
it a state vector. It is still another entity, characterized by the following property: it acts on
an arbitrary state vector to produce a linear combination of state vectors. An operator can
also act on a dual vector to product a linear combination of dual vectors. Analogously to Eq.

39, one has the equation
<Bla = <Plx><x|a]x><x] + <Bly> <ylal x> <x|

+ <@lx><x|aly><y] + <g|y><y)a|y> <y (43)

Notice that in the expansion of operator A (Eqs. 40 to 42), there appear matrix elements--
which are numbers--and dual and state vectors written in that order. We have seen earlier that
when written in the opposite order to produce a closed bracket a dual and a state vector define
an inner productwhich is a number. The ket-bra ‘> < l placed back-to-back, where the blanks
are filled by any two symbols for quantum states, represents an operator. The operator lob<¢l,
for example, acting on the state vector I¢> gives the state vector|0(> multiplied by the number
<¢\'¥)>. Alternatively, acting on the dual vector <ﬁ\ » the same operator gives the dual vector
<@l multiplied by the number <Bloc > . The product |> <‘ may be called an outer product of dual
and state vectors. The outer product of dual and state vectors yields not a number nor another
dual or state vector but an operator. In the notation of row and column matrices, observe that
the product of a two-by-one column matrix and a one-by-two row matrix is a two-by-two matrix.

This is just the matrix of the operator in the representation in which the row and column matrices

are written.
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Some examples will illustrate the procedure of representing operators. We consider some

of the devices whose matrices were derived in Chapter 5.

Example 1. The identity operator

The matrix of an open hole or analyzer loop in any representation is the identity matrix

(Equation 24 of Chapter 5) 1 0

0 1

Use the xy representation and Eq. 40 to find the operator for the open hole or xy analyzer loop

I = |x><x' + |y> <y' (open hole) (44)
Equation 44 is the machinery of an xy representation stripped to the running gears. Operating

"from the left' on any state vector |¢> it presents the state % in terms of the state vectors

x>» and |y>
I

Y> = x> <x|¥> + |y> <y[¥> (45)
Similarly, operating 'from the right'" on any dual vector <¢' it presents the state @ in terms

of the vectors <x| and <y|
<Pt = <@|x><x| + <¢Iy><y| (46)

In terms of an arbitrary representation, the operator for the open hole or analyzer loop re-

1= i< (47)
J

duces Eq. 42 to a single summation:

Example 2. Projection operators

From Eq. 40 and the known matrix elements of an x-projector (Eq. 16 of Chapter 5), we

obtain the following expression for the operator that represents an x-projector:

P = x> <x]| (48)

We can verify directly from the definitions that (48) has the required properties. For if we

operate from the left with (48) on [x> or , we get
y> g

P_ |x> = IX><XIX> = IX> (49a)

P ly> = ks<x|ly>= o (49b)
Operating on an arbitrary state vector I?ﬁ>, Px gives

P ¥> = k><x|¥> (50)

Equations 49 and 50 epitomize the properties of an x-projector. Simiarly, we can verify that

P, = |R><R| (51)

represents an R-projector, andmore generally that

= |'¢> <Y (52)
is a "'projection operator" for the arbitrary statej// . Operating on \’%>, P% leaves it un-
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changed; operating on a state vector for the state orthogonal to ¥, P;é gives zero; and oper-
ating on an arbitrary state vector |[@> it gives |¥> multiplied by the amplitude <¢|¢ > whose
absolute square measures the fraction of a beam in the state |¢> that is transmitted by the
y- projector.

Although a projection operator can always be written in the form (33), it may appear in a
form which conceals this aspect of its nature. For example, an alternative expression for the

operator PR can be found using Eq. 3 of Chapter 5:

Pp = x> (1/2)<x| + x> (-i/N2) <yl + |y> (i/V2) <=l + |y> (1/2) <yl (53)

The numerical coefficients in (53) have been written between the state vector and the dual vec-
tor symbols in order to emphasize that this is a case of Eq. 40. Since a coefficient is a number,
it can be put ariywhere in its term.

Notice that according to Eq. 47, the identity operator that represents an open hole is just
the sum of the projection operators for any pair of orthogonal basis states. Such a sum of pro-
jection operators gives the identity operator only if there is no relative phase factor between the

two terms. For example, the operator
A= x> <x| - ly><yl (54)

is not the identity operator. It represents the device whose matrix in the Xy representation is

1 0
0 -1
The difference between (54) and (44) becomes even more marked when the operators are express-

ed in another representation. For example, let 'y'> denote a photon state polarized at 45° to

the state |y>. Then the operator (54) can be written inthe x'y' representation as

A= eyl -y <x| (55)
This is not a sum of projection operators, whereas I is a sum of projection operators in all re-
presentations. Equation 55 makes it manifest that the device is one that turns x' polarized

beams into y' polarized beams, and vice versa.

6. Summary

In all the examples above, device A acts on an input beam to produce an output beam.
Corresponding to this action of the device on the beam is the action of the operator on the state
vector that describes the input beam. In general, the effect of operator A on an arbitrary state
vector is to change it to some other state vector (or linear combination of state vectors) and
multiply it by a numerical constant. The absolute square of this constant specifies the intensity
of the output beam relative to that of the input. Operators, and dual and state vectors, taken to-

gether, provide a summary notation for describing the effects of devices on beams.
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APPENDIX TO CHAPTER 6 *

TWO-PHOTON STATES AND THE ANNIHILATION OF POSITRONS

1. Introduction

Our discussion thus far has dealt entirely with one-photon states. It was emphasized
in Chapter 3 that even though all the measurements described involve beams of photons, the
photons interact with the measurement apparatus one at a time. Different photons in the beam
act entirely independently of one another.

.Sometimes two photons are emitted from a single atomic or nuclear event, such as
the decay of a particle or the mutual annihilation of a particle-antiparticle pair. In such a
case the two photons involved are correlated with one another and they must be described by

a two-photon state. In the present appendix we extend the idea of quantum state to include

states of two photons. Such concepts as orthogonality, completeness, change of basis, and the
like apply to these states. Determination of a two-photon state requires the study of many
pairs of photons, just as the determination of a one-photon state requires the study of many
single photons. The analysis of two-photon states presented here can readily be extended to

describe states of three or more photons.

2. Positron=-electron annihilation

An introduction to two-photon states is provided by the study of positron-electron
annihilation. Positrons are given off in the radioactive decay of certain nuclei (for example,
copper 64 and sodium 22). When the radioactive nuclei are embedded in a solid, many of the
positrons are brought to rest in the solid and thereafter annihilate with electrons of the solid
to produce gamma rays. The characteristic time for a positron-electron annihilation is about
10.10 seconds. In a solid the positron is brought to rest, on the average, in a time approxi-
mately one thousand times shorter than this. Therefore most annihilations take place from
rest.

We are interested here in a particular type of annihilation event, namely one in
which two gamma rays are produced

ef pe ==y 4+ (1)
Reaction (1) is the most frequent mode of annihilation. (Notice that the emission of a single
gamma ray from an isolated electron-proton system is forbidden by energy-momentum conser-

vation. ) The two-photon decay can be recognized by the fact that the photons always come off in

* This is a preliminary version of what will eventually be a separate chapter. The authors
acknowledge the advice of Professor Stephan Berko in preparing this appendix.
Copyright © 1967. The Science Teaching Center of M. 1. T.
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opposite directions, each with an energy 0.511 MeV, the rest energy of an electron or positron.

Because the electron and positron annihilate from rest, they are most likely to have zero
angular momentum. This intuitive classical picture is corroborated by a detailed quantum
mechanical analysis. As a result, the two emitted gamma rays must carry zero total angular
momentum. This condition restricts the possible polarization states of these photons, as can
be seen most directly by analyzing the states in terms of circular polarization. Suppose an
L-polarized photon is emitted in some direction from an annihilation. As we saw in Chapter
2, this photon carries angular momentum +} along its direction of motion. Both linear and
angular momentum are conserved if another L-polarized photon is emitted in the opposite direc-
tion. (Since the directions of motion of the gamma rays are opposite, the angular momenta will
then also be opposite and will add up to zero.) Likewise both linear and angular momentum are
conserved if two R-polarized photons (each with angular momentum -4 along its direction of
motion) are emitted in opposite directions. Angular momentum would not be conserved if one
of the emitted photons were right-circularly polarized and the other left-circularly polarized.

In summary, we expect that when the emitted pairs of gamma rays are tested for circular polar-
ization, the polarization will be sometimes RR and other times LL but never RL or LR.

An experiment that would confirm the conclusions of the preceding paragraph is sketched

in Figure 1. Circular polarization analyzers are placed on opposite sides of the source as

Detector Detector
R R
RL RL

Analyzer| Sece Analyzer _T-_a

Coincidence
Circuit

94
x

Ficure 1. Idealized experiment to verify that Y-ray pairs from decay of positronium are
polarized RR or LL but not LR or RL.

shown. The outputs of the detectors go to a coincidence circuit, which records a count only
when it receives simultaneously (within a very short time interval) a signal from each input.
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The argument based on the assumption that the initial state has zero angular momentum im-
plies that the coincidence circuit should register counts when both detectors are connected to
the R output channels of the analyzers or when both are connected to the L channels. But no
coincidence counts should be recorded when one side is connected to an R channel and the
other to an L channel.

It happens that the experiment of Figure 1 has not been carried out for positron-electron
annihilation. It is not easy to test gamma rays for circular polarization. At the photon ener-
gies involved neither calcite nor quartz is sufficiently birefringent and quarter-wave plates
cannot be constructed. It is possible to measure circular polarization of gamma rays using
magnetized iron, although the efficiency of detection is low. Circular polarization has been
detected with this technique in other experiments.* In the case of positron-electron annihila-
tion, no one has yet taken the trouble to perform the rather difficult circular polarization ex-
periment.

Linear polarization of gamma rays is much easier to measure than is circular polari-
zation., The technique is based on the different scattering coefficients for gamma rays of dif-
ferent linear polarization when they are incident on a target. A similar experiment to deter-
mine the linear polarization of visible light could be carried out by measuring its reflectivity
from a dielectric surface (Section 2 of Chapter 3). In Section 4 of this chapter we describe
an experiment for measuring the linear polarization of gamma rays from positron-electron
annihilation and show how the results of this experiment can be used to obtain information con-

cerning the state of the two-photonsystem. First we discuss in Section 3 the formal descrip-

tion of two-photon states.

3. Two-photon states

The notation for describing two-photon states is a straightforward extension of that in-
troduced earlier for single-photon states. For example, if we have photon pairs which are
all right-circularly polarized, we symbolize this two-photon state by the state vector |IRR>.
In like manner we define the state vectors |LL>, |LR>, and |RL>. The dual vectors of all
these states are similarly defined. We can deduce from our knowledge of single-photon states
that the four states |RR>, |LL>, |RL>, and |LR> constitute a complete set for the two-
photon system. To show this let |¢> denote the two-photon state of a pair of photons emit-
ted in positron-electron annihilation or in any other process. Then the coincidence rate in the
idealized experiment of Figure 1, divided by the coincidence rate with the analyzers absent,
measures the projection probability |<RR] 1/J>I2, Similar experiments measure |<RL\¥/ >l2,
|<LR|'}5>|2 and |<L]_r¢ >|2. The sum of these four quantities must be unity for the simple

reason that each photon, taken alone, must emerge in one or the other channel of an RL

* See article by M. Goldhaber, L. Grodzins, and A. W. Sunyar in Alpha, Beta, and Gamma
Ray Spectroscopy Edited by K. Sieghahn, North Holland Publishing Co., 1965, pp. 1423-1431.
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analyzer. Therefore the set of states is complete. We can treat each photon separately in
this manner because the two photons in a two-photon state do not interact once they have been
emitted in opposite directions. Measurement of one of these photons does not affect the re-
sults of experiments with the other member of the pair,

Not only do the four two-photon basis states form a complete set; they are also mu-
tually orthogonal. For example, in the experiment of Figure 2, which measures the projection

probability |<RL' RR>'Z, the coincidence counting rate must be zero.

Detector
R
RL R g T 5 RL _E Detector
E < S = Analyzer
Avalyzer E— Analyzer Source > Analyzer _E Y L,

No counts
recorded |

Coincidence
Circuit

Figure 2. Idealized experiment to show that state ,RL> is orthogonal to state |IRR> as
predicted from results with photons in the visible region.

In an entirely analogous manner we define a set of four linear polarization basis states
Ixx>, ‘xy), |yx>, and lyy>. These states are also mutually orthogonal and form a complete
set. The absolute squares of the amplitudes < xxl 1/ > <xy| % > 4 <yx I % >, and
<yy|“¢> are measured by experiments similar to that of Figure 1, with linear polarization
analyzers replacing the circular polarization analyzers. These amplitudes must be related to
<RR|¥>, <RL| ¥>, etc. by a transformation matrix whose elements are the projection
amplitudes étleR> 5 <xy‘RL> and so on. The latter amplitudes represent the results of
experiments in which pairs of circularly polarized photons are passed through appropriate
linear polarization projectors. Since the two photons of a pair do not interact, measurements
on one photon in the pair does not affect the other photon. Therefore the two-photon projection

amplitudes must be products of one-photon amplitudes,

<x|R><x|R>
<x|R><y|L>

<xx|RR>
<xy| RL>

(2)
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and so on. A wide variety of experiments lead us to believe that photons of all frequencies have
fundamentally the same polarization properties. Therefore we can construct the full transfor-
mation matrix for gamma ray two-photon states from our knowledge of probability amplitudes

for photons in the visible region (Table 1 of Chapter 4).

<x |RR>
<xy|RR>
<yx|RR>
<yy|RR>

-1/2
-i/2
-i/2
1/2

<xx|RL>
<xy|RL>
<yx|RL>
<yyl|RL>

1/2
-i/2
i/2
1/2

<xx'LR>
<xy|LR>
<yx|]LR>
<yy|LR>

1/2
i/2
-i/2
1/2

<xx |LL>
<xy|LL>
<yx|LL>
<yy|LL>

-1/2

Of course the phases in the elements of U are determined by the phase conventions chosen in
Chapter 4.

A decomposition of the form (2) is not possible if the two particles interact at the time of
measurement. Later on we shall encounter many examples of two-particle amplitudes which do
not separate in this simple manner, for instance that of the electron and proton in the hydrogen
atom. However, the expansion of an arbitrary state vector in terms of basis vectors, and the
existence of a transformation matrix like (3) between one basis and another, are quite general
features of the analysis of two-particle systems. Such procedures can be further generalized
to apply to systems containing any number of particles. The number of states in the basis and
the labels used to describe the states depend, of course, both on the number and the type of
particles in the system. If we are concerned only with polarization states of photons, a system

of n photons has a basis consisting of 2™ states.

4. The state of photons from positron annihilation.

We return now to the analysis of the state of the gamma ray pairs emitted in positron-
electron annihilation. We have surmised, on the basis of angular momentum conservation, that
the amplitudes <RL|'¢ > and <LR|Y > both vanish. Symmetry considerations suggest (and
the experiment described below confirms) that the projection probabilities l <RRI'¢ >| 3
and ’<LL, '¢>‘Z are equal. Each probability then has the value 1/2 and the two-photon

state vector may be written in the form
1 ik
. 9> = |RRMe™ /N2) + |LL>e™ /N2) (4)

Here the absolute phase--which has no physical significance--has been chosen for convenience.

The value of the phase X is determined from the results of a linear polarization experiment.
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With the help of the transformation matrix (3), we can write the state vector (4) in terms of

linear polarization basis states

|'¢> = |xx> (- cosX)/N2 + |xy>(sinX)/N2 + |yx> (sin®)/N2
+ |yy> (cosx)/N2 (5)

\ g~ r‘9°7
| | e

Szintillations- :
Tibler 4 |

Szintillations-
Zdhler 3

NaJ - Aristal/ , NaI-Aristal/
Bler
el
— fms —— e
Seintillations—"" W 7
zinfilfetions- Lichtl ; Szintillations-
e B Lichtlewer — Zitler 1
70cm
—_—

Fig. 1. Versuchsaufbau. Die vom Positronenpriaparat P ausgehenden Vernichtungsquanten werden an den
als Streukdrper dienenden Szintillatoren S um den Winkel ¢ gestreut und dann in den NaJ-Kristallen ab-
sorbiert. Die vier mit PM bezeichneten Photomultiplier wandeln die Lichtblitze in elektrische Impulse um

Figure 3. Illustration from article by Langhof. German-English dictionary: Blei = lead,

Szintillationszahler = scintillation counter,

Measurement of the absolute squares of the amplitudes <xx|¥>, <xy| Y> etc. will fix the
value of the unknown phase a. This measurement was first carried out by Wu and Shaknov
(Physical Review, 77, 136 (1950)). A refined version of the experiment was later performed
by Langhoff, * Figure 3 shows Langhoff's experimental arrangement. The source of positrons
is located in the center of a block of lead. A straight hole drilled through the lead permits the
exit of gamma rays moving in opposite directions from the source. The emerging gamma rays
are detected using scintillation crystals. A scintillation crystal emits a flash of light when a
gamma ray passes through it. This flash of light is detected by a photomultiplier tube fixed to
the crystal. A few of the incoming photons are Compton scattered by electrons in the first
crystal S and are detected by a second scintillation counter (either counter 3 or counter 4 in
the figure). A single gamma ray detected by both counter 1 and counter 3, for example, must

have been scattered by electrons in crystal S through an angle 6_ equal to 82°.

2
A classical argument suggests why the arrangement of scintillation counters in Figure 3

acts as a projector for a particular linear polarization. In a classical description, the elec-

* H. Langhoff, Zeitschrift fir Physik, 160, 186 (1960).
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tric field of the incident wave sets an electron in the crystal into vibration. This vibration

gives rise to radiation in all directions, which is observed as a scattered wave. The intensity
of the radiation emitted in a particular direction is proportional to the square of the component
of acceleration transverse to the direction of observation. Suppose one observes the radiation
scattered at 90° to the incident direction. For detector A in Figure 4, the vibration of the
electron is transverse to the direction of observation and a scattered wave is detected. How-
ever, for detector B in Figure 4, the electron vibration is entirely along the direction of ob-
servation and no scattered wave will be observed. Consequently, if the 90° scattering is ob-
served the system ought to function as a projector for linear polarization. That is, the reflected
beam is polarized along the axis perpendicular to the plane determined by the incoming and out-

going directions.

Detector B

4
4

vibration
of electron

>t

. < VY- pola rized
\% wave

Figure 4. Classical analysis of detection of linear polarization of gamma rays by Compton
scattering. The intensity at detector A is much greater than the intensity at detector B.
Looked at as a quantum phenomenon, the scattering of gamma rays by the electrons in
a solid is primarily Compton scattering (Chapter 2, page 2-5). A quantum treatment of Comp-
ton scattering in a solid yields results for the polarization of the scattered gamma rays similar
to that of the preceding oversimplified classical discussion. The principal differences are,
first, that the scattering angle for maximum polarization is 82° rather than 90° due to the re-
coil of the scattering electron (for gamma ray energy 0. 511 MeV--see the exercises); and,
second, the polarization is not one hundred percent even at the angle of maximum polarization.
The purpose of the experiment of Figure 3 is to relate the polarizations of two oppositely-
moving gamma rays that originate from a single positron-electron annihilation. For this pur-
pose simultaneous scattering events are detected at both ends of the hole in the lead block.
Counts are recorded only when all four scintillation counters emit signals at the same time
(within some small prescribed time interval). Let the x-axis point out of the page and the y
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Fig. 3. Ergebnis der Polarisationsmessungen mit Na2??. Aufgetragenist die Zahl der pro Minute stattgefunde-
nen Vierfachkoinzidenzen in Abhingigkeit von der Winkelstellung 7, des Polarimeters 2. Das Polarimeter 1
blieb wihrend der Messung fest auf %, = 315° eingestellt. Als Asymmetrie ergibt sich Uex = 2,50 40,10

Figure 5.

Coincidence rate ("Koinzidenzen/min'') for different angles of rotation 7

in the

apparatus of Figure 3 measures the relative polarization of gamma ray pairs emitted in posi-

tron-electron annihilation.

Positrons in this experiment come from Na22,

The reference

angle of scattering--the vertical direction of the y-axis in Fig. 3--is 315° in this plot.
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Fig. 4. Ergebnis der Polarisationsmessungen mit Cu®4. Aufgetragen ist die Zahl der pro ‘Minute stattgefun-
denen Vierfachkoinzidenzen, bezogen auf 100 mC Cu®, in Abhingigkeit von der Winkelstellung 7, des Po-
larimeters 2. Das Polarimeter 1 war wéihrend der Messung in der 45°-Stellung. Der Untergrund an ,,fal-
schen* Koinzidenzen von 4,29 wurde bereits abgezogen. Als Asymmetrie ergibt sich Uex = 2,47 4+ 0,07

tering is 45°.

Figure 6. Same as Figure 5, using Cu

64

as a source of positrons.

Reference angle of scat-

Similarity of the results shown in Figures 5 and 6 is evidence that gamma ray

pairs are characteristic of positron-electron annihilation and not of source of positrons.
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axis toward the top of the page. Then the experimental arrangement shown in Figure 3 con-
stitutes a measurement of the probability l<xxl 7/)' 2. Counter number 3 on the right hand
end can be rotated about an axis given by the gamma ray beam (the angle shown as 7 in the
figure). When this angle has been increased by 90 degrees, the experiment will measure the
absolute square of the amplitude <xy]'}0> + The results of the experiment are plotted in
Figures 5 and 6 for two different positron sources; the positrons emitted by the two sources
originate from different nuclear decays and have different initial energies. The similarity of
the two figures is evidence that the gamma rays come from positron-electron annihilation and
not from some other reaction involving the original positrons.

In both Figure 5 and 6 one sees a maximum in the coincidence counting rate when the
analyzing crystals are oriented to detect orthogonal polarizations and a minimum when they
are oriented to detect the same polarization. The minimum in the latter case is not zero
because there is no angle for which the crystal scatters only a single polarization. Further
theoretical and experimental analysis provides evidence that for an ideal polarizer the minima

of Figures 5 and 6 would be zero. In other words

‘<XXI¢>\Z = ‘<yy"¢>‘2 =0 (6)

Looking at Eq. 5, we see that this implies & = w/2. The complete expression for the state

vector |¢> in the RL representation is therefore

|¥>

|IRR>(i/N2) - |LL> (i/N2) (7)

and equation 4 reduces to
|¥>

A similar coincidence experiment has been performed on the decay of the neutral pi meson

|=y>(1/82) + |yx>(1/N2) (8)

(TTO), which likewise can decay into two gamma rays. These experiments give the same results
(7) and (8) as for positron-electron annihilation. This experiment gives valuable evidence con-
cerning the so-called "intrinsic parity" the neutral pi meson. Because of the minus sign in Eq.

7, the intrinsic parity is said to be negative.

5. Necessity for a two-photon description

The central feature of two-photon states is the correlation between pairs of photons. This
correlation cannot be detected by making observations on only one photon of the pair. For ex-
ample, taken by itself, there is no polarization of photons in the beam emerging from the right
hand end of the lead block in the experiment of Figure 3. Suppose we record only coincidences
between the two counters (counters 1 and 3) at this end. Then the coincidence rate is uniform
for all linear polarizations--all angles of rotation 7 of counter 3. Moreover, we expect that
in a modified experiment we could detect emerging from the right hand end both right- and left-
circularly polarized photons in equal numbers. In brief, the photons emerging from the right
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hand end of the hole are unpolarized according to the definition for one-photon states (Section
10 of Chapter 3). The same must be true of the photons emerging from the left end of the
hole, when these photons are considered in isolation. There is no unique orientation of coun-
ter 4 with regard to rotation about the beam direction. All such orientations give uniform
coincidence rates for the linear polarization of gamma rays emerging from the left end. There-
fore we can with equal validity choose the y-axis--coincident with the plane in which counter 4
lies--to point in any direction transverse to the beam.

Polarization effects dependent on angle occur only when analyzers and detectors are used
at both ends of the hole through the lead block. Then we observe relative polarizations of pairs
of oppositely-moving gamma rays. It is this feature of correlation that makes necessary a

two-photon description.
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Chapter 7. Atomic Beams

1. Introduction

Our study of photon polarization states in Chapters 3 through 6 has revealed many of the
central features of quantum physics. For photons these features can be exhibited in tabletop
experiments employing relatively simple equipment. With the present chapter we begin a study
of atomic and sub-atomic particles that have non-zero rest mass. The concepts and formalisms
developed in the study of photon polarization provide the basis for understanding the behavior of
these particles. The experiments that demonstrate the properties of these particles typically
cannot be performed on a tabletop but most often require a good deal of complicated equipment.
Moreover, there is no classical theory, analogous to wave optics, that prepares us for the re-
sults of the experiments.

We start with a class of experiments involving ""atomic beams.' This generic term
covers beams of various types of particles including atoms, molecules, and neutrons, all of

which share the common property that they are electrically neutral. The quantum states that

describe such systems involve many variables. Just as the photon experiments that we studied
provide information on only one part of the complete photon state (the polarization properties),
the atomic beam experiments single out one aspect of the quantum nature of the systems under
study--the so-called ''spin states.' Spin states involve the magnetic dipole moment and angu~
lar momentum of the atom or molecule. Other aspects of atomic quantum states will be studied
in later chapters.

The experiments to be described lead to the conclusion that the component of the atomic
angular momentum along any fixed axis can assume only certain discrete values. Each of these
values defines a quantum state. A complete orthogonal set of basis states for the description of
the angular momentum or spin consists of states with all the allowed components with respect to
a specified fixed axis, called the quantization axis. For different atoms a complete set may
contain two, three, four, or more states. The mathematical description of these states con-
stitutes a simple extension of the formalism developed for the two-state photon system; a spin
state is uniquely defined by its projection amplitudes or components with respect to some spec-
ific basis. Change of basis involves a change in the direction of the quantization axis, and is
governed by transformation laws analogous to those for photon states. The nature of the trans-

formation depends only on the number of states in a complete set.

Copyright © 1967. The Science Teaching Center of M.I. T.
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2. Atomic beam apparatus

In a typical atomic beam experiment particles are produced in a source, pass through one
or more regions in which they undergo an interaction with externally-applied fields, and finally
enter a detector to be counted. The purpose of such an experiment is to study the properties of
isolated atoms; it is clearly important for this purpose that the atoms not collide either with one
another or with air molecules during their flight between source and detector. Most beams from
actual sources are not so intense as to make collisions among beam particles an important pro-
blem. However, at atmospheric pressure and room temperature the mean free path for colli-
sions with air molecules is only about 10-4 cm. Consequently the experiments must be carried
out at pressures of the order of 10-6 atmospheres or lower, Figure 1 is a picture of an atomic
beam apparatus. Clearly we have left behind the simple experiments with which we were able
to study polarized photons: an atomic beam experiment requires a vacuum chamber with its
associated pumps, valves, and gauges, appropriate sources and detectors, as well as magnets
and other specialized equipment to provide interaction with the beam.

The central fact of electrical neutrality governs the design of sources and detectors for
atomic beams. If atoms in the beam were charged, it would be relatively easy to collimate them
by means of electric and magnetic fields, and to detect them by virtue of the charges they carry.
But it would also be extremely difficult to separate such ionic beams according to their quantum
states in the manner we are about to describe. Therefore one uses neutral beams, and neutral
atoms lack the handle of electric charge by which they can be prepared, manipulated, and count-
ed. Acceleration to a well defined high speed, focusing, and detection are all difficult to ac=-
complish.

Some atomic beam sources are listed in Table 1. Neutrons are produced in a reactor.
Gas molecules may be allowed to stream through an aperture. Metals can be vaporized in an
oven and the atoms of vapor released via an aperture. If diatomic molecules are to be disso-
ciated to permit study of the atoms individually, the energy of dissociation can be supplied by
electric discharge or heating.

A spreading beam from the source can be masked down with slits to produce a narrower
beam?*, The velocities of the particles in the beam vary over a range that depends upon the
temperature of the source. If a nearly mono-energetic beam is required, a series of shutters
which open and close in sequence can be used to eliminate atoms moving at velocities other than
the desired one. Unfortunately this procedure reduces considerably the intensity of the resulting
beam.

The beam itself is not visible to the human eye, and must be '"observed" by means of a
suitable detector (Table 2) whose output is read on a meter or chart recorder. The kind of de-
tector most used ionizes the atom and measures the ion current that results. Neutrons of course

cannot be ionized, and other techniques must be employed to detect them.

* But the beam cannot be made arbitrarily narrow (See Chapter 9).
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Figure 1. Atomic beam apparatus for displaying spin states of cesium. From the film "The
Stern-Gerlach Experiment' produced by Educational Services, Inc.
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Table 1. Some types of atomic beam sources*
Source Principle of operation of source | Examples of "atoms' emitted from
such a source
slit Gas molecules are piped into an en- | Molecules that are gases at room
closure and are allowed to stream temperature:
out through a slit NZ'HZ’ He, Ne, OZ’ Clz Sleisie
canals Parallel canals looking like honey- same as for slit

comb or edge of corrugated card-
board. Canals afford greater direc-
tionality than slits. To increase
beam flux use many parallel canals.

oven (used with
slit or canals)

vaporizes non-gaseous elements Li, B, Na, K, Cu, Cs, Au....

electrical dis- dissociates polyatomic gases into
charge tube, monatomic gases by electrical or
microwave arc, | thermal excitation.

dissociating
oven (used with
slit)

monatomic gases:
Hl N, C]-, O- e o0

Reactor Controlled chain reaction neutrons

Table 2. Some types of atomic beam detectors

Examples of ''atoms'' de- -

Princi f i f
rinciple of operation of detector tected by this method

Type of detector

deposition detector | Beam falls on a target surface which holds
atoms or reacts chemically with them.
Deposit may be detected by sight, with or
without chemical development, or (if atoms
are radioactive) by nuclear counting

Ag, Bi, Hg, K....

H, O, N....

especially useful for radio-
active atoms

Converts neutral atoms in beam to ions by
several alternative means: (a) When neutral | Na, K, Cs ....

atoms fall on a hot wire some lose an elec- (b) F, Cl, Br....
tron making positive ion (b) other atoms will | (c) any atoms whatever
receive an additional electron, making nega- | (''universal ionizer').
tive ion. (c) A stream of electrons crossing
the beam will ionize some of the atoms. Re-
sulting ions may be analyzed with a mass
spectrometer; resulting electrons may be
detected with an electron multiplier.

ionizing detectors (a) easily-ionized atoms:

Pirani gauge Beam enters a cavity by a single channel,
raises pressure in cavity. Hot filament in
cavity is cooled more by higher pressure
gas. Rate of cooling of filament is meas-

ured electrically.

now obsolescent; very im-
portant in older experiments
reported in the literature

BF_ counter

3 Neutrons

neutron capture in Boron 10 makes an
energetic nuclear reaction that

produces detectable ionization

* See '"Some New Applications and Techniques of Molecular Beams' by John G. King and Jerrold
R. Zacharias in Volume VIII of Advances in Electronics and Electron Physics, L. Marton, ed.
Academic Press, Inc., New York, New York, 1956.
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3. An analyzer for atomic beams

Our discussion of photon states has been based on the existence of an analyzer, a device
that splits an arbitrary beam into components that define a complete set of polarization states.
An analogous device defines those states of an atomic beam with which we are now concerned.
We first present an idealized version of the operation of this device; later we shall discuss some
of the experimental difficulties that prevent the complete realization of the ideal.

The analyzer for atomic beams makes use of an inhomogeneous magnetic field to deflect

the atoms from their straight-line path. Such an experimental arrangement was first employed
by Stern and Gerlach in 1922. We shall define as a ''standard analyzer'' the magnet sketched in
Figure 3; notice that the field is stronger near the north pole. When the device is oriented with

its N-S axis in the z-direction, we call it a z-analyzer. The field B then points essentially

_ WINDING .

glass
vacuum
envelope

~ WINDING -

Vi
[/ / Yok /

Figure 3. Cross-section of magnet used in atomic beam apparatus of Fig. 1. Beam travels
through location marked x in a direction perpendicular to the page. Photo at right
is of pole pieces from vacuum chamter.
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Figure 4, Idealized action of a magnetic analyzer on a two-state spin system. The magnitude
of the beam deflections is much exaggerated.

() magne’r off

A\}

(b) magnet on “low

(@ magnet on i gh“

Figure 5. Beam profiles obtained for a cesium beam using the equipment of Figure 1. Curve a
shows the undeflected beam with the analyzer magnet turned off. Curve b shows
the spreading of the beam with a low magnetic field. Gradient is not grea? enough to
cause separation of components. Curve c shows separation in high field gradient.
Notice the range of deflections, due princi_pally to spread of velocities in beam from

oven,



Chapter 7. Atomic Beams

along the z-direction, ¥ and its magnitude decreases with increasing z. For any orientation
of the standard device, the field strength decreases as one moves in the direction along which
% points.,

The behavior of an atomic beam passing through an analyzer depends on the nature of
the atoms in the beam. Of the atoms in the periodic table, approximately 12 percent--in their
ground state--undergo no deflection whatever. Our interest centers on the 90 or so percent
that are deflected, on excited atoms that are deflected, as well as the neutrons and molecules
that we have subsumed in this chapter under the generic name "atomic beams." For beams
of these particles, passage through the analyzer leads to a splitting into two, three, or more
beams; the number of beams depends on the type of "atom'" and its condition of excitation. The
remarkable fact that this splitting is always into a set of discrete beams allows us to apply the
concept quantum state (actually "spin state') to these atoms and to describe their behavior us-
ing mathematical machinery adapted from the description of photon polarization.

Figure 4 shows the idealized operation of a magnetic analyzer for the case of a beam of
atoms that splits into two beams. Figure 5 shows an actual intensity profile obtained by using
the apparatus of Figure 1. The beam profiles are obtained by moving a hot-wire detector
across the beams. The deflections of the two components are equal in magnitude and opposite
in sense.

By using a second analyzer oriented identically to the first, we could verify in the usual
manner that the particles in the beams that emerge from the analyzer are in a set of orthogonal
quantum states. FEach beam does not split again when it passes through the second analyzer,
but is merely deflected further in the same direction. Figure 6 shows idealized experiments
for the case of a two-state system. The behavior is analogous to that of photon beams when
they pass through successive identically oriented calcite analyzers. By measuring the inten-
sities of input and output beams, one can verify also that the set of states defined by the ana-
lyzer is complete: for any input, the intensity of the input is equal to the sum of the intensi-
ties of the output beams.

In the case of the polarization of electromagnetic radiation, the action of a calcite cry-
stal in splitting an incident beam into two can be understood classically. This is not so for
the splitting of an atomic beam first detected by Stern and Gerlach. One can predict on the
basis of a simple classical model that an atom should be deflected when it passes through a
region of inhomogeneous magnetic field. But the separation into distinct beams cannot be ex-
plained classically.

The classical model results from assuming that each atom behaves like a tiny magnetic

* The fact that the field is inhomogeneous necessarily implies that it has a non-zero component
in the direction transverse to the N-S axis. A non-uniform field that points in a single direc=-
tion throughout a small region would violate the condition div B =0 required by Maxwell's
equations.
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Figure 6. Idealized experiments used to verify that the output beams of the Stern-Gerlach
apparatus represents orthogonal quantum states.

dipole. This assumption seems a plausible one, since the moving charges within an atom can
be considered as current loops; and according to electromagnetic theory a small current loop
carries a magnetic dipole moment. Box one develops the classical model of the atom as a mag=-
netic dipole and presents the resulting classical predictions. Briefly, a dipole in a uniform
field experiences no net force, but only a torque that causes it to precess like a top about the
field direction. During this precession the angular momentum vector of the atom traces out

a cone about the field direction. But in the inhomogeneous magnetic field shown in Figure 3

the atom experiences, in addition, a net force proportional to cos 8 , where 6 is the angle
between the magnetic moment and the field direction. This force causes a transverse deflec-
tion of the atom, a deflection that is likewise proportional to cos 6. According to this classi-
cal model, therefore, each individual atom ought to be deflected either upward or downward
with greater or lesser deflection (or none at all) according to its value of p, (Equation 3).

The source of the cesium beam in Figure 1 is an oven with a small aperture. Presumably atoms
emerge from such a source with their angular momenta and magnetic moments randomly
oriented. The corresponding values of My, form a continuous band between the value -p and
the value +p. The classical model therefore predicts that the inhomogeneous field should

spread the beam in a continuous distribution transverse to its direction of motion.
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Box 1. Magnetic Moment of the Atom--Classical Model

The magnetic moment of a classical current loop has the magnitude

p o= iA/c
and the direction given by the ''right hand rule'. (Reference: Purcell,
page 364.)

For a classical model of the atom, one argues that an electron moving
in a closed orbit with velocity v constitutes an effective positive

current of magnitude

—————
x|

______ i = Ye = -ev/2wr

s é__,—/) in a direction opposite to the motion of the negatively charged electron.
e_

The area A of a circular orbit is

2
A = 7r
: —— % =L . Therefore the magnitude of the dipole moment is
M =-(ev/21rr)1rr2/c = :SCE

which can be written in the form

p = -eL/(2mc)

where L = mvr is the angular momentum of the electron in its orbit. The proportionality bet-

ween magnetic moment and angular momentum plays an important part in the theory. It is

convenient to measure L in quantum units of angular momentum H® = h/2T
L=l
Then p = -(el/2mc)f (1)

where the minus sign comes from the negative charge of the electron. The constant (ef/2mc)

is the natural unit of atomic magnetic moment, and is called the Bohr magneton kg To make

the model slightly more general, we may assume that p and / are proportional, but the con-
stant of proportionality is not necessary given by by Introduce a factor g ("Lande g-factor')
to be determined by experiment for each type of atom.

b=ppel (2)
All of our ignorance is then summarized in the value of g,

In a uniform magnetic field parallel to [, a current loop experiences

A ft A A A /r /r a stress that tends to stretch it, but no net force, If the magnetic mo-
\ \\\\ { ment is inclined to the field, there is still no net force, but there is a
N /<\ torque that tends to turn the dipole moment into the field direction.
\\ J The torque M may be shown to have the value
M =TxB

If the magnetic dipole represents a circulating electron, as in the

classical model under consideration, the torque causes a Precession
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B of the angular momentum, similar to the behavior of a gyroscope. The

—ta

angular momentum traces out a cone whose axis lies along the field

direction. The angular precession velocity is

w, = pB/L = (gpp/M)B

In a non-uniform magnetic field the loop experiences a net force of

N

magnitude FZ = F sin a. One way of calculating this force is to draw

8 B8 another circle below the orbit im such a way that the flux ¢ is the

same through both circles. Then
@ = BjAy = BA,
F 2

B].-n'r1 = B?_,'Trr2

For small angle a

r2=r1+Aztanaz r1+Az sin a
Neglect terms quadratic in Az
|T Blrlzz Bz(rl2 + ZrlAz sin a)
Whence 2
) S r OB
PR E ¥y ZB1 Az = " 2B 9z
: evB r OB
Fz—Fs1na—(c) (-ZB_a?)

which can be written as SE
Fz = -(e/2mc)(mvr) E = -(eL/ch)g—:ZB = -(e'ﬁ/?.mc),ﬁ-g—f

Using Eq. 1 we can write the force exerted on the loop when II is parallel to - -ﬁ
F = l“l‘ E
z oz
From the value of this force we can calculate approximately the deflection d of the beam at the
d \—<\
T ____________ <

D W 2

detector.

Figure 7b. Dimensions used to derive classical expression for beam deflection.

d = (WDpz-g—:zB )/(uZM) (for D>>W) (3)

Here B, is the z-component of the magnetic moment of the atom: B, =i cos 8, M is the
mass of the atom, u its speed, W the length of the deflecting magnet, and D the distance
from magnet to detector. Notice the sensitivity of this deflection to the value of the speed u

of the atom. Egquation 3 predicts that for random orientations of atoms the deflections will take
on a continuous range of values. This is in marked contrast to the splitting into discrete beams

observed in Experiment (see curve c in Figure 5).
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The classical prediction is contradicted by the result of experiment: curve c of Figure
5 shows a cesium beam split into two distinct components. In terms of the classical model,
this result suggests that the atomic dipole moments are not oriented at random. Instead, they
appear to form two groups, the members of each group having (very nearly) the same value of
Be The two "allowed" values of My have equal magnitude and opp osite sign. If we were to take
this classical picture literally, we would conclude that the magnetic moment vectors lie along
two cones, as shown in Figure 7a in the box. The opening angle of these cones is 8 = cos(p.z/p.).
(The value of b, can be inferred from the magnitude of the beam deflections, but without know-
ing the magnitude of p we could not determine 8.)

There is a serious difficulty with the classical picture. The oven from which the atoms
originate has nothing to do with the magnetic field of the analyzer. Yet, it is claimed, this oven
emits atoms whose magnetic moments lie on cones whose axes are along the field direction. If
we were to carry out the same experiment with a rotated analyzer, the beam would split exactly
as before, but along the new field direction of the analyzer. We would have to conclude that
the magnetic moments of the atoms from the same oven now lie on a different pair of cones that
have the new field direction as axis. Clearly the ""quantization axis" is established by the ana-
lyzer and not the source; a correct description of the splitting must reflect this fact. The diff-
iculty here mentioned arises from our insistence on assigning a definite direction to the magne-
tic moment of each atom. As we shall see shortly, a modification of this point of view leads to
the resolution of the problem.

As we pointed out at the beginning of this section, the splitting of an atomic beam into cleanly
separated components, each of which travels in a unique direction, is an idealization impossible
to achieve in practice. The principal cause of difficulty is the fact that sources generally pro-
vide beams in which the atoms have a range of velocities. When such a beam passes through the
analyzer the slower atoms spend more time in the inhomogeneous field and are therefore de-
flected more than are the fast atoms (Eq. 3 in Box 1). As a result, even with a two-state sys=
tem, which most closely approximates the idealized behavior, the directions of the atoms
within each of the separated beams exhibit considerable spread, as observed in curve c of
Figure 5. For beams that would ideally be split into three or more components, the spread of
velocities causes considerable overlap among the various components, and may even obscure
the pattern entirely. Figure 8 shows a typical example of this effect with a four-state system.
If we were presented with the intensity profile shown in this figure, we surely could not decide
on the basis of this evidence alone that the pattern represents a four-state rather than a two-
state system. When an atom has more than two spin states, the number of states is generally
inferred from other types of experiments (for example the resonance experiments to be dis-
cussed in a later chapter). There is every reason to believe that a sufficiently monoenergetic

beam of such atoms could be separated by an inhomogeneous-field magnetic analyzer. We shall
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\\ >

deflection

Figure 8. Velocity spread destroys clean separation of four beams, as illustrated in this theo-
retical curve. (Molecular Rays Ronald G. J. Fraser, New York, Macmillan Company,

Cambridge, England at the University Press, 1931.)

therefore invoke in our discussion ideal analyzers for systems with any number of states, even

though a clean separation has actually been achieved only for the two-state system.

4, Two-state probability amplitudes

We now investigate the properties of quantum states defined by a magnetic analyzer, con-
centrating on the simplest case--a system that is split into only two components. Specific ex~
amples of such systems are beams of cesium atoms and neutrons. These beams behave in identical
fashion in the experiments we shall describe, except that the magnitudes of the deflections of
the outgoing beams differ. We shall interpret these differences as being due to differences in
the magnitudes of the dipole moments of the particles involved.

The atoms that emerge in the upper output beam of the analyzer of Figure 2 (that is, the
atoms that have been deflected in the direction of the field) all have the same negative value of
B, the atoms in the other output beam have an equal but positive Bye We could use this
identification to classify the states. However, because the angular momentum is a more funda-
mental quantity in the description of atomic states than the magnetic moment, it is preferable
to classify the states according to their angular momentum rather than according to their mag-
netic moment. The two quantities are very closely related; in the classical model, as we
showed in Box 1, they are directly proportional to one another. Without insisting on a strict
proportionality, we observe that, because atomic magnetic moments are principally due to
electrons which are negatively charged, an atom with a positive component of magnetic moment
in a given direction is likely to have a negative component of angular momentum, and vice
versa. This expectation will later be confirmed. Accordingly, we define as |+z> the state of
the atoms deflected into the upper beam by the standard analyzer of Figure 4, and |-z> the
state of the atoms deflected into the lower beam. The labels + and - then refer to the sign
of the component of angular momentum along the direction defined by the analyzer.

The states |+z> and |-z> are the basis states for the spin system. They are commonly
called "spin up" and "spin down'' respectively. Use of this language does not imply that when an
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atom is in one of these states its angular momentum points directly along or directly opposite
to the field direction; as we have already remarked and shall see again below, such a strict
adherence to the classical model cannot be justified.

Any other orientation of the analyzer, say z', similarly defines a pair of basis states
which we can call l+z'> and |-z'>; these describe the atoms deflected respectively along
and opposite to the z' direction by a z' analyzer. An atom in the state |+z'> has a positive
component of spin angular momentum in the z' direction, and a negative component of mag-
netic moment.

Next consider the projection probability between two states belonging to different bases,
say state +z and state +z'. The experiment that measures these probabilities is sketched in
Figure 9. For concreteness we take the beam direction to be the y axis; then z' is in the

xz plane and makes an angle 6 with the z axis.
<)

’ L=

+2

+2
<
W + 2
N—/ -
2' ﬁ__f/ &
-2
+2 - projector + 2~ projector

e}
Figure 9. Experiment to measure the quantity | <+z' I +z > |

There is a serious technical problem associated with all experiments of this type. The
diagram implies that the atoms pass from a region where the magnetic field points in the z
direction, into one in which the field points in the z' direction. A completely sudden and dis-
continuous change of direction for B would violate the laws of magnetostatics; a field with
zero curl must change direction continuously. Unless special precautions are taken, the field
configuration along the path of the beams will change gradually, as indicated schematically in
Figure 10. Inside each magnet the field is strong and points in the designated direction. Just
outside each magnet, the field is weaker but its direction is still correlated with the direction
of the field in the interior. In the space between the magnets, the field is so weak that its direc-
tion is hard to determine. But it is clear that the change in field direction from 2z to z' takes

place gradually, Under such conditions the experiment of Figure 9 will not measure what it is
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Figure 10. Gradual change of direction of magnetic field B between two analyzers z and z'.
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beam direction

intended to measure. Interms of the classical picture we may say that the dipoles, which

leave the first analyzer pointing along the field, 'follow the field'' as it changes direction.

When they enter the second analyzer, they point along the direction of the new field and will all
be counted in the +z' channel. A detailed quantum treatment leads to a similar conclusion: i

the atoms change their state while traveling between one analyzer and the next. To overcome

|
this problem the experimenter must design magnets with the following characteristic: as the \
atom moves from one analyzer to the next the field direction must change direction sufficiently
abruptly compared to the precession frequency. In a later chapter we shall obtain a quantitative 1
estimate of what constitutes sufficient abruptness. For the present we simply assume that the ‘
criterion has been met, so that the dipoles do nat change their state while traveling between
analyzers.

Once the difficulty with the field directions has been surmounted, the experiment of Figure
9 can be carried out. There is one special case for which we can predict the result of this
experiment, namely the case 8 = m. For when the second analyzer is rotated by 180° with
respect to the first, the +z direction corresponds to the -z'direction. Therefore we expect
that the atoms that emerge from the first analyzer in the state |+z> should all be deflected
into the -z' channel of the second analyzer. (Notice that this again corresponds to an upward
deflection of the beam.) This prediction is readily confirmed by experiment; the projection

probabilities are

|<-z'1+2>]% = 1

|<tz' J+2>)2 = o } Freat A
Similarly one finds

|<-z' '-z>|2 =0 ]

<+ I_z>|z s ; 8= i (5)

In the generai case, there is no way for us to predict the outcome of the experiment.

The results turn out to be as follows:

l<+z'l +z> I2 = l<-z' ' -z>| s
l<+z'| -z>|2 = [<-z' |+z>| 2 in’

1]
[¢]
[e]
0]

n
0n
oy
=]

o
2 (6)
L
2
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the appearance of the half-angle in these formulas will have important consequences.

These results indicate anew the limitations of the classical model in which the magnetic
moment and angular momentum of an atom are supposed to point in a specific direction. Con-
sider for concreteness the case 6 = m/2: the magnetic field in the second analyzer of Figure
11 points along the positive x direction. Eq. (6) for this case states that

|<tlsz>)® = | <ox 42> ? < 1

Figure 11. For a two-state spin system, half the atoms in state |+z> will be passed by a
projector for state '+x>.

When an atom in the state +z is tested by an x-analyzer, it has equal probability of emerging
with positive or with negative x-component of magnetic moment (or angular momentum). More-
over the separation between the +x beam and the -x beam in the x-analyzer is just as great
as the separation between the two beams in the z-analyzer from which the +z beam was ob-
tained. How can a dipole ''pointing in the +z direction'' have two discrete non-zero components
""pointing in opposite directions along the x axis?'" The results of real experiments with atomic
beams cannot be reconciled with the classical picture of the atom presented in Box 1, according
to which an atomic magnetic moment ""points" in one direction or another. Instead one thinks
correctly in terms of basis states determined by an analyzer with a particular orientation. One
of the beams from a first analyzer can be analyzedin terms of a different basis by passing the
beam through a second analyzer at the new orientation. The experiment shows that the quantum
state|+z>is a linear superposition of the states |£x>.

Having determined the projection probabilities for the two-state system we next inquire
about the values of the corresponding projection amplitudes. We have of course already anti-
cipated that such amplitudes exist, by writing the probabilities in the standard bracket notation.
In our earlier discussion of photon states we demonstrated directly that amplitudes are necess-
ary, by considering experiments with analyzer loops. Unfortunately, an analyzer loop for atomic
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beams has yet to be constructed; the technical problems associated with such a project are
severe. But the results of many other experiments support the hypothesis that atomic states
are described by probability amplitudes that can interfere, and whose absolute squares deter-
mine probabilities. The success of the theory based on this hypothesis allows us to employ
the analyzer loop for atomic states as a conceptual device in thought-experiments, even though
no such device actually exists. (The magnetic analyzer for a many-state system will play a
similar role in our later considerations.)

The thought-experiment that provides information concerning phases of amplitudes is
shown in Figure 12. (Cf. the analogous photon experiment, Figure 6 of Chapter 4.) Let the

z' axis make an angle © with the z axis (0<86<m).

. o?en
Z ana lyzer ]
—2 -projector loop +2- prolector

Figure 12. Use of idealized analyzer loop to determine phases of projection amplitudes.

Since as usual, the open analyzer loop has no effect on the state of the particles that pass through
it, no particles are counted in the -z channel of the second analyzer of Figure 12. Hence we can
write

<-z|+z> = <-z|+z'><tz']4z> 4 <-z|-z'><-zt|4z> = 0 (D)
and similarly,

<+zl -z> = <+z |+z'> <+z'|-z> +<+z| 2> <=z l -z>=0 (8)

Eqgs. 4 and 5 tell us the magnitudes of all the amplitudes that appear in (7) and (8). Each of the
latter equations provides one condition among four phase factors., Just as in the case of photon
states, the absolute phases are a matter of convention; the general phase convention to be des-

cribed in the next section assigns to the amplitudes in equations (7) and (8) the following values:

<+z|+z'> = <+z'|+z>= cos%
<-z|+z'> = <+z'|-z>= sin-% 9)
<+z| -z'> = <-z' |+z>= —sin%

C]

<-z|-z'> = <-z'|-z> = cos>

The corresponding expressions for the kets '+z'> and |-z'> are
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|+2'> = |z> cos% + |-z> sin%
(10)

. 8 8
|-2'> =-|+z>s1nE + I-Z>C°SE
The kets |+z'> and |-z'> are orthogonal, as they ought to be. For 6 = 7/2 we have in part-

icular
J+x> = (142> + |-z>)1/N2
(11)

[=x> = (- |+2> + |-z>)1/v2

Similar expressions can be written for the dual vectors <%z'l, etc.

5. Longitudinal polarization

In the discussion thus far the "axis of quantization, " with respect to which basis states
are defined, has always been perpendicular to the beam direction. For a beam traveling in the
y direction, we have considered the states |+z> and +x>. One can also define the state |+y>
for this beam; that is, an atom can have its spin pointing along its direction of motion, as well
as transversely. Such an atom is said to be in a state of "longitudinal polarization.!

It is clear that the beams that emerge from an analyzer are transversely polarized.
To produce a longitudinally polarized beam requires that we either rotate the direction of motion
by 900, while leaving the polarization direction unchanged, or else rotate the polarization while
leaving the direction of motion unchanged. The first possibility is hard to accomplish, In prin-
ciple, one could use a gravitational force to turn the beam; gravity presumably would turn
the beam without affecting the orientation of the spin. However, gravitational forces are so weak
that no one would seriously consider building a gravity-based beam turner. On the other hand,
a rotation of the magnetic moment is readily accomplished by passing the beam through a uni-
form magnetic field, as shown schematically in Figure 13, With the -z channel of the analyzer
blocked, the emerging beam is in the state '+z> (spin up, magnetic moment down). When this
beam passes through a uniform magnetic field in the x direction its motion is unaffected, but

the magnetic moment vector precesses around the x axis. This result was derived from the

" o o O 0

longitudinally oK o L

polarized beam" | 00 o o +z
0O o o o

uniform magnetic
field perpendicular

+o Faloer

Figure 13, Use of uniform magnetic field to rotate spin direction of atoms.




QUANTUM MECHANICS

classical model in Box 1. If the strength of the field and the length of the field region bear the
proper relation to the particle velocity, the total precession can be made to be 90° and the at
atoms emerge polarized longitudinally. Of course the precession argument is based on the
classical model, whose difficulties have already been noted. The conclusion must be tested
experimentally. An experiment described in the next chapter verifies that the classical pre-
cession argument leads to correct conclusions in this case.

Atomic beams can be polarized transversely to their direction of motion or along their
direction of motion--or indeed at any angle 6, § (Figure 14, in which the beam direction is
along the y axis). Polarization of atoms at an arbitrary angle can be accomplished by a varia-
tion of the procedure of Figure 13: Choose the magnitude and direction of a uniform magnetic
field so that the initial +z atoms precess tothe desired final state. Detection of atoms in the
state specified by 6, § can be carried out by reversing this procedure: Find a uniform mag-

netic field such that after passage through it, all atoms are transmitted by a +z-projector.

z

Figure 14. Designation of an arbitrary direction using the angles 6, @ .

6. The state vector for the two-state system

Having established the possibility of longitudinal polarization for atomic beams, we are
in a position to investigate the general state of a two-state system. Let | 0, ¢ denote the
state polarized in the direction defined by the polar angles 0, @#. This ket describes the polar-
ization state of the beam that emerges from the + channel of an analyzer whose axis points in
the (8, @) direction. By turning the beam (gravity) or precessing the spin (uniform magnetic
field), we can assign the polarization state |8, § > to a beam moving in any direction. We now
ask, what are the amplitudes <+z | 8, > and<-z |6, §> ? We already know the answer to this

question for one special case, @ = 0; we saw in the preceding section that

0
<+z | 8,0> = cos >
: (12)
<-z|6,0> = sin-z— s
Consider now another special case: © = 17/2. The polarization is now in the xy plane.

The amplitudes in this case both have the magnitude 1/4/2. Within an overall phase they

can be written in the form
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<tzlg 4> = Ul'z el (13)

<-z |3, #> =I%z gin el

where @ is some unknown function of @.

To determine the dependence of a« on ff we consider the amplitude < %, ¢2|%’ ¢1>
between two states both of the form (13). The absolute square of this amplitude is the projection
probability for a beam polarized along the direction (m/2, ¢l), when the projector axis points
along the direction (m/2, ¢2). According to the basic experiment described in the last section,

which determines projection probabilities, we have

I <r/2, ¢2| /2, ¢1 > IZ . S 2 [ angle between dlrectlgns (1r/2, 02) and (/2, Gl)———]

cos2 (¢2 -, ¢1 ) (14)
2

See Fig. 14.

Figure 14, Special case: beam polarized at (IZE’ ¢1)’ projector oriented at (.%, ¢2)

Expanding the amplitudes <% ’ ¢ZI -g— 5 ¢1> in terms of the *z basis and using equations 13,
we obtain
™ m m m us
<Z’¢2'—i,¢1> '<'2's¢2|+z><+zl'z:¢1> + <E’¢

-z> <-z|-%, ¢ >

2| 1

1 {e i(z (#)) - a (¢2\>+e-i(a (8)) - e (szfz))]

= cos [a(ﬂl)- a(¢2)] (15)

We have assumed that <A |B> * = <B|A> is true for spin states as well as for
photon states. Comparing equations 15 and 14 we see that the possible solutions are
a(f) = =@/2 or +( g + constant) (16)

The choice that leads to expressions whichagree with standard notation is ©K(f) = -g/2. With
this choice the ket |% , #> takes the form

12, 9> = |+2> (K}’Z e-i¢/2>+ |-z><:71—2 ei¢/2> (17)

Finally, we turn to the general case in which both 8 and § are arbitrary. The absolute

squares of the amplitudes are given by equations (6). Defining phase factors in a manner analo-
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gous to (13), we write 6 ia(6,
<+z |8, §> =cos—2—e1a( )
(18)
-ia (0,
<-z)8, §> = sin-ge ia(8, )

The phase factor a might of course depend on 6 as well as on @; all we have learned thus far
is that in the special case 6 = w/2, a can be chosen to be - @#/2. We proceed just as in that
special case, requiring that the projection probability between two arbitrary states be equal to

2
cos of half the angle between the corresponding directions, that is, we require:

2 2 ¥
| <8,. 8,18, 8> =cos ® o, (19)

where ¥ is the angle between the direction (91, ¢1) and (92, sz). (Fig. 15.)

©,9)
(6,2) y

Figure 15, General case: Beam polarized at (91, @ projector oriented at (92, @

1), 2)-
Complete analysis shows (see the exercises) that e is in fact independent of 6, and can be

chosen to be -f/2 in general. Thus the general ket is written, in our convention, as

e_iQ’/2 + |-z> sing-eiq)/2 (20)

IQ, B> =|+z'> = |+z> s o =

2

The angles 0, @ specify an arbitrary direction in space. We have placed the z' axis along

this arbitrary direction and have called this state | +z'> . A state orthogonal to |0, ¢ >
can then be called |-z'> . One way to write this orthogonal ket is
|-2'> = -|+z > sin % e_lgj/2 + |-z > cos% elw/2 (21)

Any state orthogonal to (20) must be described by (21) times an overall phase factor.
The particular phase in (21) is chosen to be consistent with a slightly more general
(but algebraically more complicated) tr eatment in which one is concerned also with the
directions of the x' and y' axes. *

The states |+ x> have already been written down in Eq. 1L The direction +y
corresponds to & = T/2, @ = T/2. Therefore, according to (20)

[+y> = |m/2, /2> = (l+z> + [-z2> i) g T (22)
According to (21) the state orthogonal to |+y» is defined as
l-y> = (-1+2> + |-z> i) T2 i (23)

Using equations (11), (22), and (23) we can construct the following table of projection

amplitudes.

*The ket |-z'> must be polarized in the direction opposite to (8, @#). This opposite
direction has the angles -0, @ +T . If one substitutes these values into (20), one
indeed obtains (21) but multiplied by an overall phase factor -i. This additional phase
factor does not appear in the full treatment that includes the orientation of the

7-20 X' andy' axes.



Chapter 7.

Table 3. Some projection amplitudes for a two-state spin system.

FROM STATE

l+x> [-x> I+y> |-y> I+z> [-z>
<+x| 1 0 1/N2 i/N2 1/N2 1/N2
<-x| 0 1 1/N2 1/N2 -1/N2 1/N2
K '1T/4 -imr /4
E <+y| 1/N2 -i/N2 1 0 G:E eﬁ
" _ /4 it /4
3 <-y| -i/N2 1/N2 0 1 e N
“ omin/4 -iTT/4
<+z| 1/N2 -1/N2 = 1 0
ein/4 ei1‘r/4
<-z]| 1/N2 1/N2 vz 7z 0 1

Atomic Beams

The properties of the spin states derived in this chapter can be written in the matrix no-

tation developed in Chapter 6. Inthe z representation, an arbitrary spin state l)é>, char-
acterized by its projection amplitudes <+z | ¥>, <-z | ¥>, can be written as a column

matrix

<|'z|¢>
<-z‘¢>

<¢’ is jrepresented by the row matrix

(24)
The corresponding dual vector

% *
<<)é|+z> <¢|-z>) = <tz | ¥ > <-z {¥ > ) (25
The transformation to a different representation z' is accomplished by the transformation
matrix <+z'|+z> <+z'| -z>
U = (26)
<-z'|+z> <-z'| -z>

Specifically we have (cf. Eq. 14 of Chapter 6)

<+z! I‘;é) cos —g— e ig/2 sin-% eig/2 <+=z ‘ >
= (27)

'Sin% ST/ cos—g ei¢/2 -2 “;ﬁ>

where 8 and § are the polar angles of the z' axis referred to the z axis.

<-z' l ¥>

7-21



QUANTUM MECHANICS

7. Pauli matrices

Having defined basis kets for the two-state spin system and derived their transformation
laws, we can proceed to discuss operators and their matrices in the same way as we did for

photon states. An operator of particular interest is the one whose matrix in the z represent-

ation is
, ( I ? (28)
0 -1

This operator is called G‘Z, The 