CHAPTER

4

The Theory of
Quantum Mechanics

The resumé of classical mechanics given in the last chapter was
presented from a very elementary point of view: We did not attempt
to critically analyze the basic concepts of length, time, force and
mass; we confined ourselves to a system so simple that it precluded
any discussion of such important topics as angular momentum and
multiparticle phenomena; we did not present the Hamiltonian formu-
lation in its full generality, nor even mention any other formulations;
and we did not try to use classical mechanics to solve various specific
“problems.” In truth, our sole aim was to present, in as simple and
uncomplicated a way as possible, only the barest essentials of the
classical theory. And in spite of (or maybe because of) all our
omissions, we did gain a concise and fairly accurate perspective of
the general aims, assumptions and methodology of classical mechan-
ics. In the present chapter we shall try to carry out an analogous
program with respect to quantum mechanics.

Unfortunately, quantum mechanics is inherently abstract, and is
not as easy to grasp and understand as classical mechanics. It might
seem odd that, in their attempt to formulate a more truthful picture
of physical phenomena, physicists came up with a theory which is so
highly abstract that it seems quite remote from physical reality.
Yet we must bear in mind that our personal notions of physical real-
ity are derived from our lifelong contact with macroscopic phenom-
ena, and we have no license at all to extrapolate our “macroscopic
intuition” to the microscopic level. Indeed, the physicist has found,
through carefully performed experiments, that microscopic reality is
characterized by phenomena such as the wave-particle duality which
seem quite unintelligible in terms of ‘“common sense’ reasoning. We
should not be too surprised, then, to find that the logical system
which purports to account for these seeming anomalies will itself
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40 The Theory of Quantum Mechanics

seem foreign to our deeply ingrained, classical point of view. As a
consequence, the reader will be obliged to simply accept the abstract-
ness of the quantum theory, because at the present time there does
not seem to be any other way to get hold of it. Whether this is a con-
sequence of ‘“‘the way things are,” or whether this indicates that our
present understanding of quantum mechanics is in some way de-
ficient, is a question which many physicists are still pondering.

We are going to present the theory of quantum mechanics by
laying down a number of postulates (six, to be precise), from which
we shall deduce various consequences. These postulates will un-
doubtedly seem strange to the reader, and completely devoid of any
intuitive appeal. However, the reader must keep in mind that, to-
gether, these postulates form the simplest and most widely accepted
logical basis yet devised for understanding quantitatively an enor-
mous range of physical phenomena; indeed, it is this fact, and not
any ‘‘reasonableness” on the part of the postulates themselves, that
gives us cause to accept them. The postulates, together with their
derived consequences, will constitute our “picture” of quantum
mechanics.

It should be noted that both the number and content of the
fundamental postulates of quantum mechanics are to some extent a
matter of personal taste. In keeping with the limited aims of this
book, the postulates presented here will not be as general and logi-
cally economical as they could be, and of course, we shall only at-
tempt to derive a limited selection of their consequences.

We shall develop the theory of quantum mechanics for a non-
relativistic physical system with one degree of freedom, which we
represent by the variable x. Although our treatment in Secs. 4-1
through 4-4 will be applicable to any kind of nonrelativistic system
with one degree of freedom, the reader may find it helpful to keep in
mind the specific system discussed in the preceding chapter—i.e., a
particle of mass m moving on the x-axis in a potential field V(x). We
shall specialize our treatment to this important type of system in
Sec. 4-5.

4-1 THE QUANTUM STATE

In Chapter 3 we saw that classical mechanics identifies the state
of a physical system with the current values of certain observables of
the system (e.g., the position x and the momentum p). Quantum
mechanics, on the other hand, makes a very sharp distinction be-
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tween states and observables. Concerning the state of a system in
quantum mechanics, we have the following postulate:

Postulate 1. Every possible physical state of a given system
corresponds to some normed Hilbert space vector ¥ (x), and
conversely, every normed Hilbert space vector y (x) corre-
sponds to a possible physical state of the system. This corre-
spondence between physical states and normed vectors in ¥ is
one-to-one, except that two normed ¥ -vectors that differ only
by an overall scalar factor of modulus unity correspond to the
same physical state. The particular ¥ -vector to which the state
of the system corresponds at time t is denoted by ¥,(x) and is
called the state vector of the system; the system is said to “be in
the state ¥,(x).” The state of a system is completely described
by the state vector in the sense that anything which is in prin-
ciple knowable about the system at time ¢ can be learned from
the function ¥, (x).

This postulate makes three assertions: First, it asserts that the
possible physical states of a given system stand in a one-to-one cor-
respondence with the normed ¥ -vectors ¥ (x) which are defined up
to an overall scalar factor of modulus unity. In saying that ¢ (x) is
“normed,” we mean simply that its norm, or inner product with it-
self, equals 1: (y,y)=1. In saying that y(x) is defined up to an
overall scalar factor of modulus unity, we mean that if ¢ is any
¥ -scalar (i.e., any complex number) satisfying Ic? = 1, then the two
¥ -vectors Y (x) and ¢(x) = cy (x) are “‘physically equivalent” in that
they correspond to the same physical state.

Exercise 25. If Y (x) has unit norm, and c is a complex number satis-
fying |c|®> = 1, show that ¢(x) = ¢y (x) also has unit norm.

The second assertion of Postulate 1 is that everything that can
possibly be known about the state of the system at time ¢ can be ob-
tained from its “state vector’” ¥,(x). However, the postulate says
nothing about what things can be known, nor how they can be de-
rived from the state vector. These questions will evidently have to be
answered by subsequent postulates.

In view of these first two assertions of Postulate 1, we can con-
clude that the state of a system at time ¢ is completely specified if
and only if the state vector ¥,(x) is given as a definite function of
x. For comparison, we recall that in classical mechanics the state of
a system at time t is completely specified if and only if the state
variables (e.g., x(t) and p(t)) are given as definite real numbers. In
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this connection, the reader should not try to identify the x in ¥ ,(x)
with the classical position variable x(t); that is, ¥,(x) does not stand
for ¥(x(t)). The x in ¥,(x) merely represents the argument of the
function ¥,; it is a dummy variable, and does not depend in any way
upon the time variable ¢. In the special case where the physical sys-
tem under consideration is a mass particle, it turns out that there is a
very intimate connection between ‘‘position” and the argument of
the Hilbert space vectors; however, this connection is quite unlike
anything the reader might now suppose, and it cannot be explained
until after all the postulates of quantum mechanics have been
introduced.

The third assertion of Postulate 1 is somewhat indirect. In
writing the state vector of the system at time ¢ as ¥ ,(x), it is implied
that the state vector is in some sense a function of time. To bring
this out more explicitly, we shall sometimes write ¥,(x) as ¥ (x,t). It
must be emphasized, however, that the functional dependence of ¥
on t is essentially different from its dependence on x: as a Hilbert
space vector, V¥ (x,t) is properly a function of x alone, and the param-
eter ¢ serves merely to label different vectors in 3. Thus, ¥ (x,t,)
and V¥ (x,t,) are to be regarded as two different ¥ -vectors—i.e., two
different functions of x—which specify the state of the system at two
different times ¢, and t,. The behavior of ¥,(x) = V¥ (x,t) as a func-
tion of time—i.e., the ‘“‘time evolution” of the state vector—will be
taken up in Postulate 5 [Sec. 4-4]. Until then we shall be mainly
concerned with the state of the system at a single instant .

Finally, we should mention that the state vector ¥ ,(x) is some-
times referred to as the “state function” or ‘“wave function” of the
system.

4-2 OBSERVABLES IN QUANTUM MECHANICS

The quantum mechanical specification of the state of a system
evidently makes no reference at all to any physical observables of the
system; this is in marked contrast to the way in which the state of a
system is specified in classical mechanics [see Sec. 3-2]. However,
Postulate 1 does assert that the state vector in some way contains
everything we can possibly know about the system. It therefore
seems reasonable to expect that, if at some time ¢t we know the exact
functional form of the state vector ¥,(x), then we ought to be able
to make some fairly definite assertions about the physical observables
of the system at that instant; indeed, if we could not do this, then
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the state vector would be a completely useless mathematical abstrac-
tion. Before presenting the postulate which tells us exactly what can
be said about an observable when the state vector is known, it is first
necessary to define more precisely the quantum mechanical concept
of an observable. Since for the present we want to keep our discus-
sion as general as possible, we shall refer to observables by script
capital letters (e.g., the observable @, the observable ®, etc.).

As in classical mechanics, an observable @ is simply a dynamical
variable that can be measured; e.g., for a mass on the x-axis, the ob-
servables are the position, the momentum, and functions of the posi-
tion and momentum (of which the energy is perhaps the most use-
ful). The measurement of an observable @ is some well-defined
physical operation which, when performed on the system, yields a
single real number called “the value of @.” For simplicity, we shall
consider all measurements to be “ideal’ in the sense that the mea-
sured value has an experimental uncertainty of zero.

Now in classical mechanics, no real distinction is made between
the mathematical representation of an observable and the values of
the observable; however, in quantum mechanics such a distinction is
of fundamental importance. Postulate 2, which we now state, is con-
cerned with (a) the mathematical representation of @, and (b) the
possible values of Q.

Postulate 2.
(a) To each physical observable @, there corresponds in the

Hilbert space a linear Hermitian operator A, which pos-
sesses a complete, orthonormal set of eigenvectors «; (x),

a,(x), as(x),... and a corresponding set of real eigen-
values A,,A,,A;, ...
Aa;(x) = Aja;(x) i=123... (4-1)

Conversely, to each such operator in the Hilbert space
there corresponds some physical observable.

(b) The only possible values which any measurement of @ can
yield are the eigenvalues A; ,A,,A;,....

Let us begin our discussion of this postulate by reviewing the
definitions of the mathematical terms used in part (a). The fact that
the JC-vectors {a;(x)} are ‘‘eigenvectors” of the operator A with
“eigenvalues” {A;} simply means that Eqs. (4-1) hold true for all i.
To say that the eigenvectors form a “complete, orthonormal set”
means that, for all i and j,
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(ai,aj)Ef af(x)aj(x)dx = §;; (4-2a)

and, moreover, that any ¥ -vector ¢(x) can be written as

B(x) = ) (ar, 9)exi(x) (4-2b)
i=1

In other words, the eigenvector set {a;(x)} is an “orthonormal basis
set” in the Hilbert space. For brevity, we shall refer to the set
{a;(x)} as the eigenbasis of A. The condition that the eigenvalues
{A;} all be real can be conveniently written

A=A, (4-3)

Finally, the fact that A is an ‘“Hermitian” operator means that, for
any two J(-vectors ¢, (x) and ¢, (x),

(1, A¢>2 ) = (A¢1 , 2) (4-4)

It should be noted that the Hermiticity of A really need not have
been postulated, because we proved in Chapter 2 [see Exercise 19]
that any linear operator which possesses a complete, orthonormal
set of eigenvectors and a corresponding set of real eigenvalues is
necessarily Hermitian.T Nevertheless, the Hermitian property is such
a fundamental property of observable operators that we have allowed
this minor redundancy to enter into our statement of Postulate 2.
Postulate 2 says, first of all, that a physical observable @ is
“mathematically represented” by a linear operator A which possesses
a complete, orthonormal set of eigenvectors and a corresponding set
of real eigenvalues. We shall call such an operator an observable
operator. The consequences of mathematically representing ob-
servables by operators remain to be seen, but it is reasonable to
expect that these consequences will depend strongly on the mathe-
matical rules for manipulating operators. These rules were discussed
in Sec. 2-4. Perhaps the most striking difference between these rules
and the rules for manipulating ordinary numbers is that, whereas two
numbers A and B always commute (AB = BA), it is not true that
two operators A and B necessarily commute [e.g., see Exercise 14].
Thus, in some sense it may be said that observables always commute
in classical mechanics, but not in quantum mechanics. We shall see
later that the fact that not all pairs of observable operators commute

TA linear operator can be Hermitian without possessing a complete,
orthonormal set of eigenvectors and a corresponding set of real eigenvalues; how-
ever, such an operator does not correspond to an observable.
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Jeads to some surprising (i.e., nonclassical) results—among them, the
so-called “wave-particle duality” described in Chapter 1.

Although Postulate 2 ascribes no real physical significance to
either the observable operator A or its eigenbasis {a;(x)}, the asser-
tion is made in part (b) that its eigenvalues {A;} are the only numbers
that can be obtained in any measurement of @. The fact that these
eigenvalues are real corresponds to the fact that the measurement
operation always yields a real number. However, notice that nothing
in the postulate requires that these eigenvalues form a ‘“‘continuous
set” (i.e., that they cover densely all or part of the real number axis);
indeed, our labeling of the eigenvalues seems to suggest that they
form a ““discrete set” (i.e., that the difference between any two given
eigenvalues is some finite, nonzero number). Now as a matter of
fact, the set {A;} may be continuous or discrete or a combination of
the two, depending entirely on the particular observable operator to
which the eigenvalues belong. Nevertheless, it is highly significant
that the eigenvalues can be discretely distributed; for this immedi-
ately opens up the possibility for allowing certain physical observ-
ables to be ‘“quantized.” We recall from Chapter 1 that it was the
experimental discovery of such quantized observables that formed
one of the great stumbling blocks for classical mechanics.

Until now, the main simplifying restriction imposed on our
development of quantum mechanics has been the restriction to sys-
tems with only one degree of freedom (hence the appearance of the
single variable x as the argument of the ¥ -functions). We shall now
impose a second simplifying restriction: henceforth, we shall treat
the general observable operator A as though its eigenvalues were
entirely discretely distributed. We do this because a discussion of
operators with continuously distributed eigenvalues involves some
extraordinary mathematical manipulations, which, at this point,
would tend to confuse rather than enlighten. By concentrating on
operators with discretely distributed eigenvalues, we shall be able to
present most of the essential points of the theory with relative clarity
and simplicity; moreover, many aspects of the properties of observ-
able operators with continuously distributed eigenvalues may be
understood by drawing analogies with the results for the discrete case.
A brief discussion of the mathematical techniques required to deal
with continuous eigenvalues will be given later in Sec. 4-6b.

In classical mechanics, if @ is an observable then any real func-
tion of @, f(®), is also an observable (e.g., @2 or e?); this is
because if we measure a value for @, then we have obviously mea-
sured a value for f(@) also. Does this fact carry over into quantum
mechanics? The answer to this question is yes, provided we restrict
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ourselves to real functions f(z) which have a power series expansion
(i.e., a Taylor expansion) in z:

f(z) = i c,2", {c,,} real (4-5a)

To see how this comes about, let us consider the operator f(A), which
is defined by formally replacing the variable z by the observable
operator A in the series expression for f(z):

f(A)= i ¢, An (4-5b)

By A", we mean of course A multiplied by itself n times; thus, in
view of the definitions in Eqs. (2-42), f(A) is a well-defined operator.
We shall now show that f(A) is in fact an observable operator, and
that the particular observable to which it corresponds is f(@). These
conclusions are arrived at from the results of the following exercise.

Exercise 26.

(a) Prove that the operator CA", where n=0,1,2,..., has
eigenvectors {a;(x)} and eigenvalues {cAl}; here, {a;(x)}
and {A;} are the eigenvectors and eigenvalues respectively
of the observable operator A. [Hint: Establish the result
for n = 0 and n = 1; then show that the result holds for any
n 2 2 provided it holds for n - 1.]

(b) Using the result of part (a), prove that the operator f(A)
has eigenvectors {a;(x)} and eigenvalues {f(A4;)}.

We see then that the operator f(A) has a complete orthonormal
set of eigenvectors and a corresponding set of real eigenvalues; thus,
by Postulate 2, f(A) is indeed an observable operator. Furthermore,
since the eigenvalues of f(A) are {f(A))}, it seems quite reasonable to
associate this observable operator with the particular observable f(@).
This establishes what we wanted to prove, and it also shows that the
observable operator f(A) has the same eigenbasis as A does.

In classical mechanics the fact that we identify the state of a
system with certain physical observables means that both the state
and the observables depend upon time. However, in quantum me-
chanics no such identification is drawn between the state and the
observables, and an examination of Postulates 1 and 2 leads us to
conclude that, while the state vector W, (x) generally changes with
time, the observable operator A, along with its eigenbasis {a;(x)} and
its eigenvalues {A;}, are all independent of time. One consequence of
this is that, if we express the state vector V¥, (x) as a linear combina-
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tion of the eigenvectors {a;(x)} in the manner of Eq. (4-2b),

V(%) = ) (an,¥ e)an (%) (4-6a)

n=1

then the expansion coefficients or components of ¥,(x) relative to
the eigenbasis of A will be time-dependent scalars:

(a,,¥;) = fm a¥(x)¥(x,t)dx (n=12,...) (4-6b)

— oo

We refer to Eq. (4-6a) as ““an expansion of the state vector ¥ ,(x) in
the eigenbasis of the observable operator A.” At the moment, we
have no apparent reason for ever wanting to write the state vector in
such a way; however, as we shall see later, expansions of this type
play a very key role in the quantum theory. i

It should be remarked that the time-independence of A, {a;(x)}
and {A;} does not necessarily mean that the measured values of @
will be constant in time. For it remains to be specified how the out-
come of a particular measurement depends upon the state of the sys-
tem at the time of the measurement; thus, owing to the time evolu-
tion of W,(x), different eigenvalues of A might be measured at
different times. This matter will be clarified later.

4-3 THE QUANTUM THEORY OF MEASUREMENT

In Postulate 1 we have associated physical states with Hilbert
space vectors, and in Postulate 2 we have associated physical observ-
ables with Hilbert space operators. However, we certainly cannot
expect to form a meaningful physical theory merely by associating
two separate physical entities with two separate mathematical enti-
ties. Clearly it is necessary to establish some sort of logical connec-
tion between the state vector of the system and the observable
operators of the system. This logical connection is made, although in
a somewhat indirect way, via the concept of measurement. The
quantum theory of measurement thus forms the keystone of the
theoretical structure of quantum mechanics; it is here that the respec-
tive roles of the state vector and the observable operators are clarified
and interrelated.

It is perhaps appropriate to say again just what we mean by “‘a
measurement”: We regard a measurement simply as some in-principle
well-defined physical operation which, when performed on a system,
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yields a single, errorless, real number. By “errorless’ we mean that
there is no experimental uncertainty associated with the number ob-
tained, so that it can be regarded as being infinitely precise. Clearly
what we are really contemplating here is an ideal measurement—a
highly simplified abstraction of what actually occurs in the labora-
tory. A more thoroughgoing inquiry into the nature of a physical
measurement is necessary to form a truly complete picture of the
quantum theory, but such a critique is quite involved and will not be
attempted here.

We mentioned in Chapter 1 that the logical foundations of
quantum mechanics have been and continue to be the subject of
serious debate among some physicists and philosophers of science.
Most of this debate has centered upon the theory of measurement.
We shall not try to discuss here the intricate pros and cons of this
debate; instead, we shall merely present the essential features of the
quantum theory of measurement in the form that is currently favored
by most physicists. However, it must be noted that there are a few
other tenable views of the quantum theory of measufement, all of
them conflicting in various degrees with the “orthodox” view. All
these views, including the orthodox one, are based on various philo-
sophical predilections which go somewhat beyond what the experi-
mental evidence directly implies; indeed, the conflict between these
views is confined mainly to the philosophical level, since as yet no
real laboratory experiment has been devised which is capable of
picking out the “correct” view. Conversely, until such an experiment
comes along, the question of which view is really more legitimate has
no practical import.

We begin in Sec. 4-3a by stating and discussing Postulate 3,
which tells us exactly what can be predicted about the outcome of a
measurement of an observable @ which is performed on a system in
a known state ¥,(x). Next, in Sec. 4-3b, we present and discuss
Postulate 4, which tells us how the state vector is affected by such a
measurement. Finally, in Sec. 4-3c, we derive two very important
consequences of these postulates—namely, the Compatibility Theorem
and the celebrated Heisenberg Uncertainty Principle.

4-3a Predicting the Result of a Measurement
Expectation Values and Uncertainties

We learned in Postulate 2 that the only values that can ever be
measured for an observable are the eigenvalues of the corresponding
observable operator. As to which one of these eigenvalues will be
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obtained in any given instance, we may expect that this will be
somehow determined by the particular form of the state vector at the
time of the measurement. As we shall now see, the form of the state
vector does indeed have an important bearing on which eigenvalue is
measured, but it is in general not possible to predict with absolute
certainty the outcome of a single measurement.

Postulate 3. If an observable operator A has eigenbasis {a;(x)}
and eigenvalues {A;}, and if the corresponding observable & is
measured on a system which, immediately prior to the measure-
ment, is in the state ¥,(x), then the strongest predictive state-
ment that can be made concerning the result of this measure-
ment is as follows: The probability that the measurement will
yield the eigenvalue A,, is |(ay,¥ ;) .F

This postulate unquestionably marks the point at which the
theory of quantum mechanics diverges most radically from the the-
ory of classical mechanics. We recall that, in classical mechanics, if
the instantaneous state of the system [x(t),p(t)] is known, then it is
certain that a measurement of some observable @ = f(x,p) at time ¢
will yield the number f(x(t),p(¢)). In contrast to this, Postulate 3
asserts that if the instantaneous state vector of the system ¥ ,(x) is
known, then all that can be predicted about a measurement of @ at
time ¢ is that |(a;,%,)|? is the probability that the number A, will be
obtained, |(a,,¥,)|? is the probability that the number A, will be
obtained, and so on for the other eigenvalues of A. Now since Postu-
late 1 asserts that the state of a system is completely defined by the
state vector W¥,(x), and since Postulate 3 further asserts that a
knowledge of the state vector suffices only to predict probabilities
for obtaining various results in a measurement, then we are forced to
conclude:

(i) It is often not possible to predict with certainty the out-
come of a measurement which is performed on a system in a com-
pletely defined state.

(ii) If a system is subjected to two separate but identical mea-
surements, with due care taken to insure that the system is in the
exact same state just prior to each measurement, the results of the
two measurements will not necessarily coincide.

In accepting Postulate 3, it is evidently incumbent upon us also
to accept this “unpredictability” and ‘“‘nonuniqueness” of the mea-
surement process as being manifestations of some inherent property

FIf the eigenvalues of A were continuously distributed, we would have to
state this postulate a bit differently. We shall discuss this point later in Sec. 4-6b.
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of Nature. Although this view disagrees violently with our own
deeply ingrained ‘classical” intuition, the most we can justifiably
claim in rebuttal is that, on the macroscopic level, this property of
Nature must not be noticeable. We shall return to this point later in
Sec. 4-5c.

Having acknowledged this negative aspect of Postulate 3, namely
that a unique result of measuring @ on a system in a known state
¥ ,(x) usually cannot be predicted, let us consider now its positive
aspect: the probability for obtaining the eigenvalue A, can be pre-
dicted, and is in fact equal to [(ay, , ¥ ,)/2.

Exercise 27. Prove that, as required by Postulate 1, the quantity
l(¢x,¥¢)I* is not changed if ¥,(x) is replaced by the vector
¢V, (x), where c is any ¥(-scalar satisfying |c|? = 1.

We recall from Eq. (4-6a) that the inner product (a;, ,¥,) is just
the “component” of the state vector ¥,(x) in the “direction’ of the
eigenbasis vector a, (x); the value of this time-dependent complex
number can be calculated from the functions a(x) and v,;(x) ac-
cording to Eq. (4-6b). It is altogether fitting that the probability for
measuring A, for @ in the state ¥,(x) should be determined by the
inner product (aj,¥,), since this quantity depends both upon the
state vector of the system and upon some property of A associated
with the eigenvalue in question. However, if the square modulus of
(o, V) is to be a probability, then we must have, in analogy with
Eq. (2-2a),

0< (e, ¥)I? <1 forallk (4-Ta)

Exercise 28. Prove the above inequality. [Hint: Use the Schwarz
inequality to prove the right-hand relation.]

In addition to satisfying Eq. (4-7a), the inner product (o , 0 )
must also be such that

oo

PRI ATEES! (4-Tb)

k=1

This relation, which is analogous to Eq. (2-2b), merely expresses the
requirement of Postulate 2 that a measurement of @ is certain to
yield either A; or A, or A; .... In order to prove that Eq. (4-7b)
is indeed satisfied, we shall show that its left hand side is just the
norm of ¥, (x); our result then will follow from the requirement of
Postulate 1 that (¥,,¥,)=1. Using the fact that the eigenvectors
{a;(x)} form an orthonormal basis in ¥, we have for any possible
state vector ¥ ,(x),
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(\Ilt’\pt) = <Z (ai"’lft)ah Z (aj:\Ilt)O‘j>

i=1 j=1

=i 3 (@l )% (a5, 0) (@0.)

=1

s i

=

=1

(0, W ) * (0, W) 55

oo

~
I
—

= D (@ ) (@,¥)
Thus
(W)= D fon )P (4-8)

and Eq. (4-7b) follows at once. [Note that Eq. (4-8) is just a particu-
lar case of Eq. (2-40b).] We have proved, then, that the numbers
oy, W )2, [(oa, )2, I(as,¥,)I?, .. .satisfy conditions (4-7), and
so form a set of probability numbers p, , p,, Ps3, - . . analogous to the
set discussed in Sec. 2-1. We shall explore this analogy in some detail
later in this section.

If it should happen that two of the eigenvalues of A are equal,
say A; =As = A, then the probability for measuring the value A in
the state ¥ ,(x) is according to Eq. (2-3a), just the sum of the sepa-
rate probabilities, |(as, ¥, )I* + |(as, ¥ ,)|%. In this case, we would say
in the terminology of quantum mechanics that the eigenvalue A is
degenerate. In order to keep our discussion of quantum mechanics as
simple as possible, we are going to restrict our attention to observ-
ables @ whose operators have distinct or nondegenerate eigenvalues:

Require A;# A; if i#j (nondegenerate eigenvalues) (4-9)

It is with some reluctance that we impose this simplifying restriction
on our development of the theory of quantum mechanics, because it
turns out that the occurrence of observable operators with degenerate
eigenvalues is rather common, and is the source of many interesting
phenomena. Thus we feel obliged to return to this matter at the end
of our development (Sec. 4-6¢), and discuss briefly how some of our
conclusions will be modified by the relaxation of Eq. (4-9).

In the next exercise we shall deduce the following very impor-
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tant result: A measurement of @ on the state ¥,(x) is certain to
yield the eigenvalue A, if and only if ¥,(x) coincides with ag (x).
We use the term “coincide” in the loose sense allowed by Postulate 1:
two state vectors ¥, (x) and ¥, (x) “coincide,” or describe the same
physical state, if ¥, (x) = c¢¥, (x), where c is any complex number
satisfying |c|* = 1.

Exercise 29.

(a) Prove that, if ¥,(x) = cay(x), where |¢|?> = 1, then a mea-
surement of @ at time ¢ is certain to yield the value A,.
[Hint: Calculate the quantity |(o;, ¥ ,)|?.]

(b) Prove that, if a measurement of @ at time ¢ is certain to
yield the value A, , then ¥ ,(x) = cay (x), where IcP =1.
[Hint: Prove first that (a;,¥,)=0 for i+ k; then use
Eq. (4-6a).]

We see, then, that a necessary and sufficient condition for a
measurement of @ to yield a unique, predictable value is that the
state vector of the system coincide with some eigenvector of A. This
is obviously a very important and useful result. However, it should
not be taken to imply that the physical state corresponding to the
normed J-vector ay (x) is in some way more precisely defined than
the physical state corresponding to some normed, linear combination
of two or more of the vectors {o; (x)}; for, Postulate 1 stipulates that
any normed J¥(-vector completely defines a physical state, regardless
of whether or not the vector in question happens to coincide with an
eigenvector of some observable operator. Moreover, while o}, (x) may
be a “nice” state vector for predicting the result of a measurement of
@, it will not necessarily coincide with one of the eigenvectors{8;(x) }
of some other observable operator B, in which case the state vector
ay, (x) will not respond “nicely’ to a measurement of ®. In a sense,
we are merely reemphasizing here the basic point that, in quantum
mechanics, the state of a system is solely and completely determined
by the functional form of its state vector, and not, as in classical
mechanics, by the expected result of any measurement which might
be performed on the system.

In Sec. 2-1 we considered the problem of randomly selecting a
ball from a box of N identical balls, with n, of the balls bearing the
number v, , n, bearing the number v, , etc., and with Zphn, =N. We
observed that the probability p, that the randomly selected ball will
show the number v,, is n, /N. Suppose we let

U = A,

(4-10a)
ne = (o, ¥ )’ N
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We note that the second of these equalities is indeed legitimate, since
Eq. (4-7b) insures that Z,n, =N; in addition, all of the numbers
|(a , ¥ t)l N can be made as close to integer values as desired simply
by taking N large enough. The probability that a randomly selected
ball will show the number A, is evidently

Pr =g /N = (o, ¥ )1 (4-10Db)

which is just the probability for measuring A, in the state ¥ ,(x).
Therefore, we see that this hypothetical ball-drawing experiment
simulates the process of measuring @ on a system in the state ¥,(x).
The major difference is that, in the ball-drawing experiment, it is in
principle possible to eliminate the unpredictability and nonunique-
ness of a drawing merely by ascertaining the exact positions of all the
balls in the box and drawing accordingly; however, as we have pre-
viously emphasized, there is no possible way of eliminating the ele-
ment of uncertainty in the measurement of an observable on a given
state. Another difference is that, owing to the time-dependence of
the inner products (aj,¥;), the numbers {n;} and the probabilities
{p;} in Egs. (4-10) will in general change with time (but note that the
values {v;} = {4;} will evidently remain fixed). However, we shall
postpone until Sec. 4-4 a consideration of this time-dependence, and
for now continue to confine our discussion to a single instant .

In view of the foregoing analogy between the measurement pro-
cess in quantum mechanics and the ball-drawing experiment of
Sec. 2-1, it is clear that we can define for a series of measurements an
“average value” and an ‘‘rms deviation” analogous to () and Av in
Egs. (2-4) and (2-5). However we recall that, in the multiple drawing
procedure used to define (v) and Av, we were careful to return to the
box each ball drawn before making the next random drawing; in
other words, we wanted each drawing to be made with the box of
balls in the same ‘“state.”” Therefore, in order to define quantities
analogous to (v) and Av for a series of measurements, we must take
care to insure that the state vector of the system is the same for each
measurement of the series. We shall not concern ourselves here with
how this can be accomplished; however, we should remark that this
is not a trivial requirement, because, as we shall find in Postulate 4,
the state vector of the system usually suffers a drastic alteration as a
result of a measurement. For this reason, it is necessary to distinguish
in our subsequent discussion two different types of multiple measure-
ments:

(i) A series of M repeated measurements on the state ¥,(x) is
a series of M measurements which are performed with the system
always in the state ¥ ,(x) just prior to each measurement.
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(ii) A series of M successive measurements is a series of M
measurements performed in rapid succession, such that the state
vector of the system for the nth measurement is the state which re-
sults from the (n-1)th measurement.

We shall discuss the results obtained in a series of successive
measurements after we have introduced Postulate 4. For now, we
consider a series of very many repeated measurements of @ on the
state ¥, (x): We denote by the sumbol (A), the average of the values
obtained in these repeated measurements, and by A A, the rms devia-
tion of these values. Therefore, putting v, = A, and DPr = l(ap ,¥,)P
into the expressions for (v) and Av in Eqs. (2-7) and (2-9), we have at
once

(A), = Z (e, ¥ )I* Ay (4-11)
k=1
and
= ) 2
AA, = /(Zl(ak,%)FAi)—(Z |(ak,\1/t)|2A,,> (4-12)
k=1 k=1

In the terminology of quantum mechanics, (A)t is called “‘the
expectation value of @ in the state ¥,(x),” and AA, is called ‘“‘the
uncertainty in Q in the state ¥,(x).”” We must be careful, though, not
to read any incorrect implications into these two names. Thus, we
should not necessarily ‘“‘expect’ to obtain the value (A), in any mea-
surement of @ on the state ¥,(x), because (A), will not necessarily
coincide with one of the eigenvalues of A. In addition, the ‘“un-
certainty” described by AA, is not due to a less-than-perfect measur-
ing technique, and measured values which differ significantly from
the expectation value are no less legitimate than measured values
which are nearly equal to the expectation value. In the final analysis,
(A); and AA, are best understood by analogy with (v) and Av in
Sec. 2-1: (A),, being by definition the average of the values obtained
in a series of very many repeated measurements of @ on the state
¥ ,(x), is a sort of “representative number”’ for all these values; AA“
being by definition the rms deviation of these values, provides a quan-
titative estimate of their “‘dispersion,” and hence a quantitative esti-
mate of how adequately these values are “represented’” by the single
value (A),.

Exercise 30. If f(z) is any real function expandable in a Taylor series,
show that (f(A)),, the expectation value of f(@) in the state
¥, (x), is given by

oo

AP =) e, ¥ I f(Ay) (4-13)

k=1
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where {a,(x)} and {A,} are the eigenvectors and eigenvalues
respectively of the observable operator A. Compare the form of
this result with Eq. (2-8). [Hint: To prove Eq. (4-13), apply
Eq. (4-11) to the operator f(A) as defined in Eq. (4-5b) and dis-
cussed in Exercise 26.]

It is significant that, according to Eq. (4-11), (A), is uniquely
determined by the state vector ¥,(x). That is, although we cannot
generally predict what we might call the “value” of Q@ in the state
¥,(x), we can predict the ‘“‘expectation value” of A in the state
¥,(x). Expectation values of observable operators are of practical
importance for the following reason: In making measurements in the
laboratory, the physicist will often effect a similtaneous measurement
of many identical systems (e.g., atoms), each of which is in the same
state W,(x). Clearly, if M separate but identical systems, all in the
same state ¥,(x), are each measured once, the results will be essen-
tially the same as if one of the systems were subjected to M repeated
measurements in that state. Thus, the expectation value is often a
very useful single number to characterize an experimental result.

Equations (4-11) and (4-12) for (A), and AA, are not the most
convenient forms for these two quantities. In the next two exercises,
we shall derive more useful expressions for the expectation value and
the uncertainty.

Exercise 31. By applying Eq. (4-13) to Eq. (4-12), prove that
AA, =V(A?), - (AM? (4-14)

The foregoing expression for the uncertainty is analogous to
Eq. (2-6) for Av,and the remarks made there are applicable here, too.
The significance of Eq. (4-14) is that it expresses the uncertainty
completely in terms of expectation values. This renders all the more
interesting the result of the following exercise.

Exercise 32. Prove that
(Ay, = (¥,,A¥,) (4-15)

[Hint: Expand the inner product (¥ + A¥,) as we expanded
(¥,,¥,) in our derivation of Eq. (4-8), and so obtain the right-
hand side of Eq. (4-11).]

According to Eq. (4-15), we can calculate the expectation value
of @ in the state ¥,(x) by first forming the vector AV ,(x), and then
taking the inner product of this vector with the vector ¥ ,(x):

(A), =f ¥ *(x)[A¥ ,(x)] dx (4-16)
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The virtue of Eq. (4-15) (or Eq. (4-16)) as opposed to Eq. (4-11) is
that the former expresses (A), in terms of the operator A and the
state vector ¥ ,(x) only, and does not involve the eigenvectors and
eigenvalues of A. It should also be remarked that Eqgs. (4-11) and
(4-12) must be modified slightly to accommodate continuously
distributed eigenvalues, whereas Eqgs. (4-15) and (4-14) are valid
irrespective of the mode of distribution of the eigenvalues.

It is interesting to note that the reality of (A),, which of course
is obvious from Eq. (4-11), can be seen from Eq. (4-15) to be a direct
consequence of the fact that A is Hermitian: thus, using first
Eq. (2-34a) and then Eq. (4-4), we find

<A>;k = (\I’t’A‘I’t)* = (A‘I’t,‘l’t) = (‘Pt,A‘I’t) = <A)t

which proves that <AZt is real. 3
We can replace A in Eq. (4-15) by f(A), and so obtain

(FA), = (¥ ,f(A)T,) (4-17)
Applying this to Eq. (4-14), we can write A A , more explicitly as
AAt =V (¥, ,A%Y,) - (¥,,A¥,)? (4-18)

To summarize the main features of a series of repeated measure-
ments, we show in Fig. 3 the sort of results which might be expected
if M repeated measurements of @ are performed on some state ¥, (x).
On the horizontal axis, we plot the eigenvalues of A, and above each
eigenvalue we draw a bar whose height is equal to the number of
times that eigenvalue was measured. Ideally, we expect the eigen-
value A; to be obtained |(a;,¥,)|> M times, but the actual number of
times A; is obtained will usually differ somewhat from this number
owing to the randomness involved. In Fig. 3 we have connected the
points (4;,l(a;,¥,)|> M) with a smooth curve; we call this curve “the
distribution curve for @ in the state ¥,(x).” Clearly, a complete
specification of the expected results of these repeated measurements
requires a specification of all the points (4,;,|(«a;, ¥ ;)|> M)—i.e., the full
distribution curve. A less detailed but still very useful description of
these results is obtained simply by specifying the values (A), and AA,:
these two numbers evidently characterize, insofar as it is possible, the
“center” and ‘“width,” respectively, of the distribution curve.

Exercise 33. Suppose ¥,(x) coincides with the eigenvector a; (x)—
i.e., ¥, (x) = cay (x) where [c|* = 1.
(@) Show that it follows from both Egs. (4-13) and (4-17) that
(F(A): = f(Ar).
(b) Using the result of part (a), show that in this case,

T

|
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Fig. 3. A bar graph showing the eigenvalues of A versus the number of times
each eigenvalue was obtained in a hypothetical series of M repeated mea-
surements of @ on the state ¥ ,(x). The smooth curve is the “distribu-
tion curve for @ m the state W,(x),” and by definition connects the
points (A,,l(al,\llt)| M) in a smooth but otherwise arbitrary way. The
quantities (A)t and AAt measure the mean and rms spread of the distribu-

tion curve.

(Ay, = A, and AA, = 0. Describe the shape of the distribu-
tion curve for @ in the state a; (x).

4-3b The Effect of a Measurement upon the State
The ‘““Value of an Observable”

According to Postulate 3, if two repeated measurements of some
observable @ are made on a system in a given state, the results of
these two measurements will not usually coincide. If we were actu-
ally accustomed to making measurements on the microscopic level,
this fact would seem commonplace to us. Equally commonplace
would be the following fact: if two successive measurements of @ are
made on a system, the results would always coincide. More specif-
ically, suppose the system is in some state ¥,(x), not necessarily an
eigenvector of A, and suppose that a measurement of @ yields the
eigenvalue A, . If we then make an immediate remeasurement of @,
without “readjusting” the state vector as we did for repeated mea-
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surements, we can be certain of obtaining the same result, A, . The
remeasurement is to be made ‘“‘immediately’’ in order to insure that
no time evolution of the state vector takes place between the mea-
surement and the remeasurement. ¥

The predictability of successive measurements of @, when con-
trasted with the unpredictability of repeated measurements of Q,
stands as a relatively ‘“‘charitable gesture” on the part of Nature. To
see how this feature may be incorporated into our theory of quantum
mechanics, we reason as follows: According to Exercise 29, if we are
certain that the remeasurement of @ will yield the same eigenvalue
A, as did the measurement, then the state vector of the system at
the time of the remeasurement must coincide with the eigenvector
ap(x). This implies that the state vector of the system immediately
after the first measurement must coincide with « (x), regardless of
what the state vector was just before the first measurement. These
considerations make plausible (but of course are not intended to
“prove”) our fourth postulate, which tells us how the state vector is
affected by a measurement.

Postulate 4. A measurement of an observable generally causes a
drastic, uncontrollable alteration in the state vector of the sys-
tem; specifically, regardless of the form of the state vector just
before the measurement, immediately after the measurement it
will coincide with the eigenvector corresponding to the eigen-
value obtained in the measurement.3

Exercise 34. Prove that, as a consequence of Postulates 3 and 4, two
successive measurements of @ will necessarily yield identical
results, assuming the measurements are performed sufficiently
close together in time.

Postulate 4 asserts that a measurement of an observable @ essen-
tially forces the state vector of the system into an eigenvector of A.
However, it makes no claims regarding the details of the process by
which this change in the state vector occurs. Indeed, since it is
generally not possible to predict with certainty which eigenvalue will
be obtained in a measurement, it follows that it is generally not
possible to predict with certainty which eigenvector the state of
the system will be forced into by thie measurement. All we can say is
that the probability that a measurement of @ will force the system

TThe time evolution of the state vector is the subject of Postulate 5, and
will be discussed in Sec. 4-4.

tIf our development allowed for observable operators with degenerate

eigenvalues, we would have to state this postulate a bit differently. We shall
discuss this point later in Sec. 4-6c.



4-3 The Quantum Theory of Measurement 59

into the eigenvector ay(x) is [(ap,¥,)|*, where ¥,(x) is the state
vector of the system just prior to the measurement. Thus, the same
element of “indeterminism” which pervaded Postulate 3 greets us
again in Postulate 4.

A rather curious implication of Postulates 3 and 4 is that a
measurement tells us much more about the state of the system
immediately after the measurement than the state of the system
immediately before the measurement. For, suppose a measurement
of @ yields the eigenvalue A, : by Postulate 4, we can deduce that the
state vector of the system immediately after the measurement coin-
cides with the eigenvector ay, (x); however, all we can say about the
state vector immediately before the measurement is that, by Postu-
late 3, its inner product with a;, (x) was nonzero. Thus the outcome
of a single measurement tells us rather precisely what the state of the
system is as a result of our having measured it, but very little about
what the state of the system was when we started measuring it. Ina
sense, then, the measurement operation in quantum mechanics is
more in the nature of a “preparation” of a state, rather than an
“observation” of a state (although we evidently have no real control
over which state will be “prepared’ in a given measurement).

The reader should now begin to appreciate the really profound
difference between the classical and quantum theories of measure-
ment. This difference can be further illuminated by a careful exam-
ination of the meaning of the phrase ‘‘the value of an observable.”

In classical mechanics, we regard an observable as always ‘“having
a value,” and a measurement of an observable simply amounts to
taking an unobtrusive peek at what its current value really is. In par-
ticular, the value of an observable is presumed to exist regardless of
whether or not it is perceived in a measurement by some observer.

In quantum mechanics, for the particular case in which the
state vector ¥ ,(x) coincides with some eigenvector a; (x) of A, we
can evidently adopt without difficulty the viewpoint of classical
mechanics and say that @ “has the value” A,. The justification for
this is simply that, by Postulate 3, it is absolutely certain that an ideal
measurement of @ will yield the number A, . We run into difficulties,
however, when we consider the more general case in which ¥ ,(x) is a
linear combination of two or more eigenvectors of A

V() =) (@, ¥ Jay(x) (4-19)

In this case, a measurement of @ can clearly yield any value A; for
which the corresponding component («;,¥ ;) is nonzero; therefore the
value obtained in a measurement of @ on this state will be neither
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predictable nor unique. For this reason, it seems rather pointless,
if not meaningless, to try to ascribe some particular ‘‘value” to @
in this state. In fact, the prevailing view among physicists today is
that if the state vector of the system does not coincide with an eigen-
vector of A, then the corresponding observable @ cannot be said to
“have a value’ in the generally accepted sense of this phrase. There
are other tenable points of view on this somewhat philosophical
matter; however, the foregoing is the “orthodox’ view, and therefore
is the one that we shall adopt in this introductory treatment of
quantum mechanics.

The above conclusion is such a radical departure from our
classical way of thinking that we cannot help but look for some easy
way of avoiding it. For example, it is tempting to try to interpret
the expansion of ¥, (x) in Eq. (4-19) as being merely a shorthand way
of saying that “the state vector of the system really coincides with
one particular eigenvector «;(x), but owing to a lack of information
we can say only that [(a;,¥)|* is the probability that this particular
eigenvector is a;(x).” Now, if this interpretation of Eq. (4-19) were
legitimate, then @ could indeed be said to ‘“have a value’’; we just
wouldn’t know for sure what the value really is, since we don’t know
for sure with which eigenvector ¥,(x) really coincides. However,
according to the orthodox view of quantum mechanics, this is not a
correct interpretation of the expansion in Eq. (4-19). For, this linear
combination is a perfectly legitimate normed ¥ -vector, and so by
Postulate 1 defines a physical state of the system just as precisely
and completely as does any one of the eigenvectors of A, Moreover,
if it so happened that this linear combination coincided with some
eigenvector f, (x) of some other observable operator B (in which case
® could be said to “‘have the value B, ’’), then it would be inconsistent
to say that the state vector really coincides with one of the eigen-
vectors «o;(x). We see, then, that within the framework of the four
postulates which we have laid down here, there seems to be no simple,
satisfactory way around the conclusion that an observable does not
always “have a value.”

Generally speaking, then, a measurement of @ in quantum
mechanics is not simply a matter of ‘“‘taking an unobtrusive peek at
the value of @.” For, if the state vector of the system does not coin-
cide with one of the eigenvectors of A, then (i) the measurement
cannot be ‘‘unobtrusive,” since the state vector will necessarily be
altered by the measurement, and (ii) a ‘“value of @” does not even
exist in the usual sense of the phrase, since the result of the measure-
ment is not uniquely predetermined. Perhaps a more accurate de-
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scription of the measurement process is to say that the very act of
measuring @ essentially develops a value of @; it evidently accom-
plishes this by the simple expedient of forcing the state vector into
one of the eigenvectors of A, so that then @ will indeed have a value.
In this view, |(a,¥,;)|? is the probability that a measurement of @
on the state ¥,(x) will develop the value A,. But, to repeat our-
selves, this is not the same as saying that | (a;, ,¥;)|? is the probability
that @ has the value A, in the state ¥,(x). Regardless of one’s point
of view on this somewhat philosophical matter, it clearly is usually
safer to speak of the “value obtained in a measurement of @’ rather
than the “‘value of @.”

We shall agree, then, that it is strictly legitimate to say that @
“has a value” in the state ¥;(x) if and only if a measurement of @ on
this state is certain to yield a definite result—i.e., if and only if
¥,(x) coincides with an eigenvector of A. Suppose it happens that
¥ ,(x) “almost” coincides with an eigenvector of A; more specifically,
suppose that in the expansion of ¥,(x) in the eigenbasis of A,
[Eq. (4-19)], the coefficient of one particular eigenvector ay(x)
strongly dominates the coefficients of all the other eigenvectors, so
that in accordance with Eq. (4-7b),

<1 fori#k
I(Oli,‘lrt)l2 —3
§1 fori#k

Exercise 35. If ¥ ,(x) is such that the above conditions are satisfied
prove that:
(a) The distribution curve [see Fig. 3] for @ in this state has a
sharp, narrow peak at the eigenvalue 4.
(b) A measurement of @ on this state is almost certain to yield
a definite result.

In view of conclusion (b) in the above exercise, it is tempting to
say that @ almost has a value in the state ¥,(x). The strength of the
qualifier “‘almost” is evidently governed by the width of the distri-
bution curve for @ in this state. Since this width is proportional to
AA,, we may therefore regard the uncertainty in @ in the state
V¥, (x) as indicating the extent to which @ can be said to “have a
value” in this state: the smaller AA, is, the more sense it makes to say
@ “has a value,” and the larger AA, is, the less sense it makes to say
this. This rather loose way of speaking will prove useful in in-
terpreting some of our subsequent results.

We shall conclude our general discussion of the quantum theory



62 The Theory of Quantum Mechanics

of measurement in the next section, where we shall derive two impor-
tant theorems pertaining to the measurement of two observables, @
and ®.

4-3c The Compatibility Theorem and the Heisenberg
Uncertainty Principle

We come now to consider one of the most interesting and impor-
tant topics in quantum mechanics, namely, the problem of the
“simultaneous measurability’ or ‘‘compatibility’’ of two observables.
Let us begin by explaining precisely what we mean by these terms.

Suppose a given system is subjected to three successive measure-
ments involving two observables, @ and ®: the first measurement,
denoted by Mg, measures @ ; the second measurement, denoted by
Mg, measures ®; and finally the third measurement, denoted by
Mg , measures @ again. It is of course understood that these measure-
ments are to be performed in very rapid succession so that there is no
significant time evolution of the state of the system between M4 and
Mg, and between Mg and Mg . With respect to these measurements,
we now make the following definition: the observables @ and ® are
said to be simultaneously measurable or compatible if and only if the
result of Mg is certain to coincide with the result of Mg , regardless
of what the state of the system was just prior to Mg .

From the standpoint of classical mechanics this definition is
rather useless, because in classical mechanics all pairs of observables
are ‘‘compatible”: @ and ® each ‘“have a value” at all times, and
since the (ideal) measurement Mg will have no effect upon the value
of @, it follows that My and Mg will always yield the same number.

From the standpoint of quantum mechanics, though, we can
easily see that @ and ® might very well fail to satisfy our condition
for being simultaneously measurable: We denote by A and B the
observable operators for @ and ®, and we denote by {a;(x)}, {8;(x)}
~and {A;}, {B;} the associated eigenbases and eigenvalues of these
operators.
1Aka,~(x) =A(x) i=1.2,... } (4-20)
BB;(x)=BB;(x) i=1,2,...

Suppose that Ms yields the value A, , and Mg then yields the value
B,,. By Postulate 4, the state vector just after Mg, or just before Mg,
coincides with ,, (x). Now, it is not necessarily the case that g,, (x)
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coincides with a, (x); if it does not, then by Postulate 3 (or Exercise
29) M, will not necessarily yield the value A, , and therefore @ and®
are not ‘“‘compatible.”

If, in the foregoing example, the second measurement My had
not been performed, then the results of My and M, would obviously
have been the same [see Exercise 34]. This implies that Ms always
has the potential of “spoiling” the remeasurement, Mg. It must be
emphasized that this spoilage, if it occurs, is not the result of an im-
perfect measuring technique, but rather follows as a simple, direct
consequence of Postulates 3 and 4.

We shall now state and prove one of the fundamental theorems
of quantum mechanics, which we shall call the “Compatibility
Theorem.” This theorem essentially provides us with two conditions,
either of which is both necessary and sufficient for @ and ® to be
compatible observables. The proof of this theorem is in itself an
illuminating exercise in the application of Postulates 3 and 4. Our
proof here will be subject to our continuing restriction that A and B
have nondegenerate eigenvalues [see Eq. (4-9)]; the theorem is
actually valid without this restriction, but certain parts of the proof
are more complicated.}

The Compatibility Theorem. Given two observables @ and B
with corresponding operators A and B, then any one of the following
three conditions implies the other two:

(i) @ and ® are compatible observables.
(ii) A and B possess a common eigenbasis.

(iii) A and B commute.

Proof: Our proof will consist in showing that (i) and (ii) imply
each other, and (ii) and (iii) imply each other. The fact that (i) and
(iii) imply each other will then follow trivially.

(i) implies (ii): Suppose that, just prior to Mg , the state vector
of the system coincides with any elgenvector a;(x) of A. Then M,
will yield the value A; [by Exercise 29]. When Mg is performed, the
state vector will become coincident with some eigenvector §;(x) of
B [by Postulate 4]. Now since G and ® are given to be compatible,
then it is certain that the third measurement Mg must yield the same
value A; that was obtained in the first measurement. But by Exercise
29, if a measurement of @ performed on the state §;(x) is certain to
yield the eigenvalue A;, then §;(x) must coincide with a;(x). We have
proved then that any vector of the set {a;(x)} coincides with some

FFor a general proof of the Compatlbxhty Theorem, see Chapter IV of
F. Mandl, Quantum Mechanics, cited in footnote in Preface.
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vector of the set {B;(x)}. Since these sets are orthonormal basis sets,

the correspondence must be one-to-one;¥ thus, simply by rearranging

1ndlces we can put {a,(x)} = {8, (x)} = {¢, (x)} where {¢, (x)}is a
“common eigenbasis” for A and B:

A¢n(x) =A,¢0,(x) n=12,... }
Bo,(x) =Bnén(x) n=12,...

(ii) implies (i): Given the common eigenbasis {¢,(x)} as in
Egs. (4-21), measurement M, , with any result A,,, leaves the system
in the state ¢, (x), by Postulate 4. Then by Exercise 29, Mgz must
yield the value B,,, and what is more important, will leave the system
in the state ¢, (x). Hence, by Exercise 29, Mg must yield the value
A, again. Since these arguments are independent of which eigenvalue
A, was obtained in the first measurement, it therefore holds regard-
less of what state the system was in just prior to that measurement;
consequently, @ and ® are compatible observables.

(ii) implies (iii): Given the common eigenbasis {¢, (x)} as in
Egs. (4-21), then using the linearity of A and B we have

B, (x) = AB, ¢, (x) = B,A¢,(x) =B, A, ,(x)

(4-21)

BA¢,(x) =BA,¢,(x) = A,Bo,(x) = A,B,¢,(x)

Thus, (AB - BA) ¢n(x) = 0. Now we are not yet done, for in order
to show that A and B commute, we must show that (AB - BA)y (x) =0
for any ¥C-vector Y (x). To this end, we first expand the given ¥ -vec-
tor ¥ (x) in the eigenbasis {¢,, (x) }:

V(x) = ) ndnl®)

n

where ¢, = (¢,,, V) [see Eq. (2-39)]. Then, using the fact that both
the product and the sum of two linear operators are also linear opera-

T This is “almost obvious.” We have shown that each a-vector coincides
with some g-vector. Now, two a-vectors cannot coincide with the same g-vector,
since any two «-vectors are orthogonal; similarly, two g-vectors cannot coincide
with the same a-vector. It remains only to show that no g-vector is ‘“‘missed’’ in
the a-to-g correspondence. To prove this, assume the contrary: some g-vector,
Bx(x), does not coincide with any of the o-vectors. Then the expansion of
Br(x) in the a-basis, Bp(x) = Z;(a;,Px)a;(x), must contain at least two non-
vanishing terms, thus implying that 8p(x) is nonorthogonal to at least two a-
vectors. But since each a -vector coincides with a unique g-vector, then we must
conclude that gz(x) is nonorthogonal to at least two g-vectors—a conclusion
which clearly contradicts the orthonormality of the g-vectors. Therefore the
assumption is false, and the a-8 correspondence is indeed one-to-one.
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tors, we find

(AB- BA)y(x)= ) c,(AB- BA)p,(x)=) ¢, 0=0

Thus the operator AB acting on any ¥C-vector ¥ (x) produces the same
vector as does the operator BA acting on ¥ (x). This means that A
and B commute.

(iii) implies (ii): Given that A and B commute, then for any
eigenvector a;(x) of A, we have

ABa,-(x) = BAai(x) = BA,-ai(x) = AiBOli(x)

In other words, A operating on the ¥ -vector ﬁa ;(x) has the effect of
simply multlplylng this vector by the number A;; this implies that
the vector Ba;(x) is an eigenvector of A Dbelonging to the eigenvalue
A;. Since the eigenvalues of A are taken to be nondegenerate, then
the vector Ba;(x) can differ from the vector o;(x) by at most a scalar

factor ¢, which merely takes account of the fact that the norms of
a;(x) and Ba;(x) need not be equal:

Ba;(x) = ca;(x)

But this equation implies that a;(x) is a (normed) eigenvector of B
belonging to the eigenvalue c¢. Since the eigenvalues of B are nonde-
generate, then we have for some j, ¢ = B; and a;(x) = §;(x). We have
proved then that any vector of the set {a;(x)} coincides with some
vector of the set {8;(x)} Since these sets are orthonormal basis sets,
the correspondence must be one-to-one,{ so simply by rearranging
indices we can put {a, (x)} = {8, (x)} = {6, (x)}, where {¢,(x)}is the
“common eigenbasis” set in Eq. (4-21).
Q.E.D.

As a simple illustration of this theorem, we recall from Exercise
26 that, for any reasonable function f, the operator f(A) is an observ-
able operator which has the same eigenbasis as the observable opera-
tor A. Therefore, the Compatibility Theorem tells us that the opera-
tors A and f(A) must commute, as may easily be verified from Eq.
(4-5b), and also that the observables @ and f(@) must be compatible,
which seems eminently reasonable.
Exercise 36.

(a) Using the power series expansion of f(A) in Eq. (4-5b),

prove directly that A and f(A) commute.
(b) Using the fact that A and f(A) have the same eigenbasis
{a;(x)}, prove directly that @ and f(Q) are compatible.

¥ See preceding footnote.
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If A and B do not possess a common eigenbasis, then according
to the Compatibility Theorem two successive measurements M, and
Mg of @, when separated by a measurement My of ®, will not always
yield identical results. However, for a given result of Mg , it is pos-
sible to make probabilistic predictions about the outcome of Mag.
To do this, one first writes down the expansion of the A-eigenbasis
in terms of the B-eigenbasis and vice versa:

o (x) =) (Bisauk ) Bi (%)

B (x) =) (e fi)eu(x)

Using these expansjons, along with Postulates 3 and 4, one can cal-
culate the probabilities for all possible “routes” which lead from the
given result of My to any particular result of Mg Thus, suppose
Mg yields A,, and we wish to know the probability that Mg will
yield A,,. We reason as follows: After M, yields A, , the system is
in the state a,(x), and the probability that Mg will yield some result
B; is |(B;,a,)|*. If B; is obtained on the second measurement, the
system will be in the state §;(x) for My, so the probability that Mg
will then yield the desired result A,, is [(a,,,8;)|>. Thus, according
to Eq. (2-3b), the product |(8;,a,)1* |(a,,,8;)I* gives the probability
that the value A,, will be obtained in Mg via the result B; for M.
Using Eq. (2-3a), we conclude that the sum Z;|(8;,a, )I? |(a,, ,8;)I* is
the probability that, given the result A, of Mg, Mg will yield the
value A, regardless of the result of Mg. The following exercise will
illustrate this procedure more explicitly.

Exercise 37. Suppose A and B “almost” possess a common eigenbasis;

more specifically, suppose that when the eigenvectors of B are
expanded in terms of the eigenvectors of A, one has

’
5 = Vo oy () + 2 s 1)

A

B =2 e ) Yo (@)

Bn(x)'_-an(x)’ n23 J

(a) Verify that this expansion is consistent with the orthornor-
mality of {«;(x)} and {B;(x)};i.e., prove that if (a;,e;) =&
then (8;,8;) = §;; also.

ijs
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(b) Expand the eigenvectors of A in terms of the eigenvectors
of B.

(c) Prove that if My yields any one of the values A;, A4, ...,
then Mg will necessarily yield the same result.

(d) Prove that if My yields the value A,, then there is a 5/8
probability that M, will yield A, and a 3/8 probability that
M, will yield A, .

If two observables @ and ® are incompatible, then the Com-
patibility Theorem tells us that their corresponding operators A and
B do not commute; that is, for at least one vector y(x) in ¥,
(AB - BA) ¢ (x) # 0. Now it turns out that the noncommutability
of many pairs of noncommuting observable operators can be ex-
pressed by an equation of the form

AB- BA=c (4-22)

where ¢ is some nonzero scalar; Eq. (4-22) means simply that, for
any ¥ -vector ¢ (x), (AB- BA)y(x)=cy(x). For such a case, the in-
herent incompatibility of @ and ® is strikingly illustrated by the fam-
ous “Uncertainty Principle,”” which was first ennunciated by W. Heis -
enberg:

The Heisenberg Uncertainty Principle. If A and B are such that
AB- BA= ¢, where c is a scalar, then the uncertainties in @ and ® in
any state ¥ ,(x) satisfy

SR
BAi 8B 2 5 el (4-23)

Before presenting the proof of this theorem (the proof is purely
mathematical and involves no physical arguments), let us first point
out its profound physical implications.

According to the Heisenberg Uncertainty Principle, if two ob-
servable operators A and B satisfy Eq. (4-22) with ¢ # 0, then the
product of the uncertainties in @ and ® in any state ¥,(x) is strictly
bounded away from zero. Thus, if we somehow contrive to force the
system into states having smaller and smaller uncertainties in @, then
these states will necessarily have larger and larger uncertainties in
®—and vice versa. In view of our discussion at the end of Sec. 4-3b,
we can also express these conclusions in the following way: If A
and B satisfy Eq. (4-22) with ¢ # 0, then Eq. (4-23) implies that the
more sense it makes to say that @ ‘has a value” in a given state, the
less sense it makes to say that ® “has a value’ in that state—and vice
versa. Furthermore, if it so happens that ¥,(x) coincides with one of
the eigenvectors of A, so that AA, =0 and @ therefore really has a
value, then Eq. (4-23) evidently requires that ABt = oo, in which case
it would be completely meaningless to speak of @ as havmg a value.
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In view of these implications, it is not surprising that the Heisen-
berg Uncertainty Principle occupies a prominent place in the overall
structure of quantum mechanics. For example, we shall see in
Sec. 4-5c that it leads to a satisfactory resolution of the “wave-
particle paradox.”

We shall now conclude our development of the quantum theory
of measurement by proving the Heisenberg Uncertainty Principle.
Although the proof entails a considerable amount of mathematical
manipulation, the reader should note that it relies mainly upon (i)
the definition of Hermiticity in Eq. (4-4), (ii) the mathematical ex-
pression for the uncertainty in Eq. (4-14), and (iii) the properties
of the inner product of two ¥(-vectors in Egs. (2-34) (particularly
the Schwarz inequality).

To simplify our notation, we shall omit the subscript ¢ in what
follows, keeping in mind the fact that all our calculations hold at
any one instant of time. Using the expressions

AA=V(A%)- (A2 AB=+(B?)- (B)

for the uncertainties in @ and ® in the state ¥ (x), we shall first prove
the generalized uncertainty relation:

AA - AB;% (¥, [AB- BA] )| (4-24)
From this generally valid relation, we may easily obtain Eq. (4-23)
by inserting Eq. (4-22) and then using the fact that (¥ SE=1.
To prove Eq. (4-24), we first define two operators A’ and B' by
A'=A-(A) and B'=B- ®
Concerning these operators, we next prove three lemmas.

Lemma 1. A’ and B’ are Hermitian operators.

Exercise 38. Prove Lemma 1. [Hint: Using the fact that A’ is the
difference of two Hermitian operators, show that (y, ,A’ Vy) =
(A'y,,¥,) for any two Hilbert space vectors ¢, (x) and ¢/, (x).]

Lemma 2. A'B'- B'A' = AB- BA

Exercise 39. Prove Lemma 2. [Hint: Note, for example, that A (B) =
(B) A, since A is a linear operator and (B) is a scalar. ]

Lemma 3. (A'W,A'¥)=(AA)?
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The proof of Lemma 3 goes as follows:
(A ,A'W) = (¥,A"?¥)
= (T,[A - (A]*¥)
= (V,[A? - 2AM)A + (AP ]V)
= (¥,A20) - 2(A)(¥,AV) + (A2 (¥,V)
=(A%) - 2(AXA) + (A - 1
= (A?) - (A
J(A'W,A') = (AA)?
The first step in the above proof makes use of the Hermiticity of A,
which was established in Lemma 1. The remaining steps invoke the
definitions of A’, (A) and AA, as well as the mathematical properties
expressed in Egs. (2-34) and (2-42).T
With these three lemmas, the proof of the generalized un-
certainty relation in Eq. (4-24) goes as follows:

(v,[AB- BA]v)=(¥,[A'B - B'A'1V) [by Lemma 2]
=(v,A'B'¥)- (¥,B'A'V)
=(Av,Bv)- (B¥,A'¥) [byLemmal]
=(A'v,Bv)- (A'V,B'W)*

SO
(W,[AB - BA]w)=2ilm (A'¥, B'Y)

In the last two steps we have made use of Egs. (2-34a) and (2-13),
respectively. We now take the modulus of both sides of this equa-
tion. Using the fact that |i| =1, along with Eq. (2-18a), we obtain

|(¥,[AB- BA] ¥)| = 2|Im (A'¥, B'Y)

According to Egs. (2-17), the magnitude of the imaginary part of a
complex number is never greater than the modulus of the complex
number, so we may write

I(¥,[AB- BA]¥)| < 21(A'Y, B'Y)|

TThe expression for AA in Lemma 3 allows a very simple proof of the
fact that the vanishing of AA, is a necessary and sufficient condition for ¥ ¢(x)
to be coincident with an eigenvector of A. For, according to Lemma 3, AA; van-
ishes if and only if the vector A'wy(x) = (A - (A);)¥(x) has zero norm, But the
only vector with zero norm is the null vector, f(x) = 0. Therefore, AA; = 0 if
and only if AW ,(x)= (A, ¥ (x)—i.e., if and only if ¥ (x) is an eigenvector of A.
We had previously inferred the sufficiency condition only indirectly through
Exercises 29 and 33.
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We now write the Schwarz inequality, Eq. (2-34d), with ¢, (x) =
AV (x) and ¢, (x)= B'¥ (x):
(AW, BY) < VAV, AV) - /(BY,B'V)
Applying this to the previous inequality, we obtain
|(¥,[AB- BA]Y)| < 2V(AV, A'D) -V(B'Y,BW¥)
or, by virtue of Lemma 3,

|(¥,[AB- BA]v)|< 2AA - AB

This last equation is just Eq. (4-24), and so the proof is complete.

4-4 TIME EVOLUTION OF THE QUANTUM STATE

In our review of classical mechanics in Chapter 3 we considered
at some length the problem of the time evolution of the classical
state, but we did not deem it necessary to dwell very long on the
rather obvious definition of the classical state. By contrast, our
comparatively lengthy sojourn into quantum mechanics thus far has
been almost exclusively concerned with describing precisely what is
meant by the ‘“state of a system” in quantum mechanics—a task
which we have found to be anything but trivial. For, since quantum
mechanics makes a radical, seemingly perverse distinction between
the state of a system and the physical observables, it was necessary
first to define each of these concepts separately, and then, using the
quantum theory of measurement, to carefully delineate the subtle
relationship between the two. Fortunately, however, once we arrive
at a reasonably good understanding of these concepts, it is not too
difficult to comprehend what the theory of quantum mechanics has
to say about how a system behaves with time. As we shall see, in
this respect quantum mechanics has much in common with the classi-
cal approach, in that it provides us with well-defined ‘‘equations of
motion” for the state vector W ,(x), and also for the expectation
value (A), and the probability coefficients (a,,¥,) for a given ob-
servable @. In this section we shall obtain these equations of motion
and discuss some of their important implications.

In order that our development will be valid for any physical
system with one degree of freedom, we shall continue to refer to ob-
servables “‘in general” by @,®, etc. In Sec. 4-5 we shall exhibit the
specific forms of the relevant observable operators for the particular
case of a mass m on the x-axis (this will constitute our Postulate 6),
and we shall then apply our general theory to that particular prob-
lem in some detail.
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4-4a Energy and the Hamiltonian Operator
The Time Evolution Equation for ¥ ,(x)

In our discussion of the time-evolution problem in classical me-
chanics, we found that there was a very intimate connection between
energy and time. Thus, while on the one hand the observable
“energy’”’ was unique in that it maintained a constant value in time
[see Exercise 22], it turned out that it was the energy written as the
Hamiltonian function H (x,p) that actually governed the time develop-
ment of the system [see Eqgs. (3-10)]. Keeping this in mind, we be-
gin our discussion of the time-evolution problem in quantum me-
chanics by presenting the postulate which tells us exactly how the
state vector of a system changes with time.

Postulate 5. For every physical system there exists a linear,

Hermitian operator I:I, called the Hamiltonian operator, which

has the following properties:

(a) The Hamiltonian operator H is the observable operator
corresponding to the total energy of the system. Hence,
H possesses a complete, orthonormal set of eigenvectors
{nr (%)} and a corresponding set of real eigenvalues {E}},

Hnp(x) =Exnp(x)  k=1,2,... (4-25)

where the numbers {E, } are the allowed values of the total
energy of the system. 7

(b) The Hamiltonian operator H determines the time evolu-
tion of the state vector of the system, ¥,(x)= V¥ (x,t),
through the differential equation

0 5
in Py W (x,t) = HY (x,t) (4-26)

provided the system is not disturbed. The constant % is
called “h-bar,”” and has the value

h=h/2r =1.054 X 1073 joule - sec (4-27)

According to this postulate, if ¥, (x) is the state vector of the
system at time t = 0, then (provided the system is not intruded upon
by some external agency) as t assumes successive values t;, f,,...,
the state vector successively coincides with the ¥(-vectors ¥; (x)=
W(x,t), Vi, (%)= ¥(x,ty), ..., where ¥(x,t) is that solution of
Eq. (4-26) which satisfies the ‘“initial condition” W¥(x,0) = ¥, (x).
Consequently, the state vector of the system evolves with time in a
completely deterministic way, just as x(t) and p(t¢) do in classical me-
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chanics. This is true so long as the system is not disturbed, and in
this connection we must emphasize that, according to Postulate 4,
the measurement process represents such a disturbance which alters
the otherwise orderly time development of the state vector.

We may now trace the following interesting parallelism between
classical mechanics and quantum mechanics: In {classical | quanturp}
mechanics, once the Hamiltonian {function, H(x,p) | operator, H}
is specified for a given system, then the undisturbed time evolution
of the state of the system {[x(t),p(t)] | ¥(x,t)} can be uniquely de-
termined by solving the time-evolution equation {Egs. (3-10)|
Eq. (4-26)}, subject to the specified initial condition {[x(0),p(0)] =
[x0,P0]11¥(x,0) = ¥, (x)} Pursuing this parallelism a bit further, we
recall that the postulates of classical mechanics did not specify the ex-
act form which the Hamiltonian function assumes for a given physical
system; for example, Newton’s second law does not tell us that the
Hamiltonian function appropriate to a mass m attached to a spring is
H(x,p) =p*/2m + kx* /2. Similarly, Postulate 5 does not tell us what
to write down for the Hamiltonian operator H for a given physical
system. Indeed, it is the task of the physicist as a ‘“‘clever observer of
Nature” to discover or invent an appropriate Hamiltonian {function,
H(x,p)| operator, H} for a given {classical | quantum} system.

We see then that, given the explicit form of the Hamiltonian
operator, we can in principle calculate the state vector of the system
at time ¢t if we know the state vector at time 0. An obvious question
at this point is, how can we ever know what the state vector is at
t = 0? Unless we are just ‘“given’ ¥, (x) outright, the only way we
can know what it is for sure is to make a measurement of some ob-
servable @ at time t = 0: By Postulate 4, this measurement will force
the system into one of the eigenvectors of A, and merely by taking
cognizance of which eigenvalue was obtained in the measurement, we
will know which eigenvector the system was forced into. Thus, if a
measurement of @ at time O yields the result A, , then immediately
after the measurement the state vector will begin to evolve from the
vector ¥, (x) = ap(x) in the manner prescribed by Eq. (4-26). This
orderly time evolution will continue until such time as another mea-
surement is performed on the system, at which time the foregoing
process will be repeated. It will be observed that this method of
“preparing” the state ¥, (x) depends crucially upon the fact that the
measurement operation tells us what the state vector is immediately
after a measurement, rather than immediately before.

One of the requirements of Postulate 1 was that the state vector
of the system always have unit norm: (¥,,¥,)=1. It is reasonable
to ask whether or not the time behavior of ¥ ,(x), as specified by
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Eq. (4-26), is such that, if (¥(,,¥,) =1, then it will be true that
(¥,,¥,)=1 for all t> 0. To show that this is indeed the case, we
shall prove that the time derivative of the norm of ¥ ,(x) vanishes
identically. We have

d AV, v,
— = [ —¢ - 4-28
) <at ,wt> <\Pt,at ) (4-28)

Exercise 40. By writing out the inner product (¥,,¥,) in its integral
form, [\ *(x,t)¥ (x,t)dx, and using the fact that the integration
variable x is independent of t, prove Eq. (4-28).

Now according to Eq. (4-26),

v, 1 . i
— =— HV¥,=- - Hv¥
at Tty .
where we have used the fact that, since i®> =-1, then 1/i=-i. In-

serting this into the right-hand side of Eq. (4-28), we obtain

d i - it
E(‘I’n‘l't)= < % HY ‘I’> + <‘I’n‘%H\I’t>

5] o+ [ 2] wese

[g] [T, ¥,) - (¥, HY)]

Since H is an Hermitian operator, then for any state ¥ ,(x), we have
HY,,¥,) = (¥,;,H¥,); therefore, we conclude that

d
dt (Y, ¥,)=0 (4-29)

This proves that the time evolution of the state vector, as dictated by
Postulate 5, is consistent with the requirement of Postulate 1 that
the state vector always have unit norm.

Although the time evolution of the state vector is completely
specified by the differential equation (4-26), there is another way of
describing this time evolution which has a formal elegance, and oc-
casional usefulness, that Eq. (4-26) lacks. According to Postulate 5,
if we place the system in some particular state ¥, (x) at time 0, then
the passage of a time t “transforms’ this state vector into some new
vector ¥,(x), which can be found by solving Eq. (4-26). However, we
recall from our discussion in Sec. 2-4 that the transformation of a
given ¥(-vector into another ¥ -vector may generally be regarded as
the result of an operator acting on the given vector. In this spirit, it
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is tempting to write
¥ (x) = U)W (x) (4-30)

where Ij( t) is some operator that transforms the state vector at time
0 into the state vector at time ¢t. Now, we know from Eq. (4-26) that
the time evolution of the state vector depends crucially upon the
system’s Hamiltonian operator _ H, so it is reasonable to expect that
U(t) will be some function of H as well as ¢. It is also possible that
U(t) might depend upon ¥, (x) as well, but if this were the case then
Eq. (4-30) would not be very interesting or useful. However, by us-
ing the definition of fJ(t) in Eq. (4-30) together with the time-evolu-
tion equation (4-26), we can show that the operator U(t) is a well-
defined function of H and ¢ alone, and is independent of the initial
state ¥, (x). We call U(t) the time-evolution operator of the system.

To deduce the form of the time-evolution operator, we first sub-
stitute Eq. (4-30) into Eq. (4-26):

ih %(t) W, (x) = HU(t)Y , (x)

This equation says that the operator ii(o U/ot) acting on the ¥ -vector
V¥, (x) must produce the same ¥ -vector as does the operator HU act-
ing on ¥, (x). Since we want this to be true for any choice of ¥ (x),
then we must have

aU(1)
ot

This is a differential equation for the operator U(t). The time-evo-
lution operator must satisfy this differential equation for all H and ¢,
and it must also satisfy the “initial condition”

U0)=1 (4-32)

Exercise 41. Derive Eq. (4-32) from the definition of U(t) in
Eq. (4-30), and explain its meaning.

ih =HU(t) (4-31)

We shall now demonstrate that the required form for the opera-
tor U(?) is

=e

(ol
Z -iHt/n

(4-33)

This equation asserts that U(t) is a certain power series in the operator
H (the power series has a well-defined meaning by virtue of Egs.
(2 42)), and we have chosen to denote this power series by the
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symbol exp (- iHt/h). In adopting this symbolic representation for the
power series in Eq. (4-33), we are merely following the procedure
described in Sec. 4-2 for defining functions of operators [see
Eqgs. (4-5)]; for, it will be recalled that the function f(x) = e* has the
Taylor series expansion

and we have merely replaced x by (- iH¢/h) in obtaining the right-hand
side of Eq. (4-33).

It is easy to see that the power series in Eq. (4-33) satisfies the
initial condition Eq. (4-32), since all the terms under the summation
sign vanish for ¢t = 0. To see that this power series also satisfies the
differential equation (4-31), we calculate its time derivative. Re-
membering that the operator H is linear, so that (Ht)" = H"¢", and
also that H is independent of ¢, we have from Eq. (4-33)

20(t) Z-o: <—hl—l:l>n (nt#r ) ; i(——;l Ht)n_
o+ Y ML (- H)) ot
h (n-1)!

n=1 n=1

1

i o °°<_h ) R
=(—£H> 1+ ZT = = HO@)

which is identical to Eq. (4-31). Consequently, the operator U(t)
in Eq. (4-33) is indeed the time-evolution operator of the system;
it satisfies Eqgs. (4-31) and (4-32), and therefore it satisfies Eq. (4-30)
for all tZ 0 and all choices of the initial-state vector ¥ (x).

Exercise 42. Show that if one ignores the operator character of H
and U(t), then the “symbol” exp (-iHt/h) satisfies Egs. (4-31)
and (4-32) in a purely formal sense.

Since U(t) in Eq. (4-33) is a linear combination of products of
the linear operator H, it follows that U(t) is a linear operator.
However, the coefficients in this linear combination are obviously not
real, so it does not follow that U(t) is an Hermitian operator [see
Exercise 16]. In fact, it is easy to see that U(t) is not Hermitian: We
recall from Exercise 26 that the operator f(A) has eigenvectors
{an(x)} and eigenvalues {f(A,)}, where {a,(x)} and {A,} are
the eigenvectors and eigenvalues of A. Therefore, the operator
U(t) has eigenvectors {n,(x)} and eigenvalues {exp(-iE,t/h)}. In
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particular, since the eigenvalues of U(f) are not pure real [see
Eq. (2-20a)], then U(t) cannot be Hermitian [see the discussion
preceding Exercise 18]. Therefore, U(¢) is not to be regarded as an
observable operator; its character and function are altogether different
from the operators which we have discussed so far.

The time-evolution operator plays an important role in more
advanced treatments of the time behavior of systems; however, in our
subsequent work in this book we shall use the time-evolution equa-
tion, Eq. (4-26), rather that the time-evolution operator, Eq. (4-33).
We have introduced the time-evolution operator primarily because
the picture conveyed by Eq. (4-30), of ¥, (x) being ‘“‘carried into”
¥ ,(x) by a linear operator which depends only on H and t, is con-
ceptually very important, and significantly enhances our appreciation
of the time-evolution process in quantum mechanics.

It was pointed out earlier that the general observable operator
A, along with its eigenbasis {a, (x)} and eigenvalues {A,}, do not
depend upon time. However, the time-dependence of ¥ ,(x) pre-
scribed by Postulate 5 clearly implies a time-dependence for the
expectation value (A), = (¥,,A¥,), and the probability coefficients
(a;,%¥;). In the next two sections we shall derive from Eq. (4-26) the
time-evolution equations for these two quantities.

4-4b The Time Evolution Equation for (A),
The Time-Energy Uncertainty Relation

We found in Sec. 4-3a that the results of many repeated measure-
ments of an observable @ on a state ¥,(x) can often be adequately
described by the expectation value (A), and the uncertainty AA, [see
Fig. 3]. The behavior of these quantities with time is therefore of
some interest. We shall not examine here the time evolution of AA,,
but we note that, by virtue of Eq. (4-14), the time behavior of
AA, can in principle be determined if one knows how to determine
the time behavior of expectation values. It is this latter problem that
we shall examine in this section. .

To investigate the time dependence of (A),, let us simply calcu-
late its time derivative. This calculation is formally very similar to
the one carried out in the last section in proving Eq. (4-29). Using
the fact that the inner-product integration variable x and the observ-
able operator A are both independent of time, we have in analogy
with Eq. (4- 28),

d

N v, < )
= + _—
i (A, = - (\If,,A\I/,) ( A\lf) \I/t,A -
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Then, inserting the expression for 8 ¥ ,/d ¢ given in Postulate 5,

d i . 5 i
dt (A)t == <'%H\Ilt,A\I’t> + (‘I’t,A [‘%HW{])

% :
[‘%] (HY ,,A¥,) + [“ %i\(‘l’t,Aﬂ‘I’t)

i = & o
[ﬁ] [(H\pt’A\I}t)_ (\IIhAH‘I/t)]
Finally, invoking the Hermiticity of H, we obtain

2w, - [hi] (¥, HAY,) - (¥, ARV )]

or
d - i . P
£ (A, =£(\Ilt, [HA - AH]¥,) (4-34)
This is the fundamental time-evolution equation for the expecta-
tion value of an observable @. It evidently gives the instantaneous
time-rate-of-change of (A), in terms of the instantaneous state vector
¥ ,(x) and the operator (HA - AH).

Exercise 43. Using Eq. (4-34), prove that if A commutes with the
Hamiltonian operator of the system, then both the expectation
value (A), and the uncertainty AA, are constant in time. [Hint:
To prove that AA, is constant, show that both (A?), and (A)?
are constants.]

The foregoing exercise provides us with a rule for determining
the “constants of the motion”: If A commutes with H, or equivalently,
if @ is compatible with the total energy of the system, then @ is a
constant of the motion in the sense that (A), and AA, are independent
of time. In particular, since H certainly commutes with itself, then
(H); and AI:I, are always constant in time. This is analogous to the
result in classical mechanics that the energy is a constant of the
motion [see Exercise 22]. We shall discuss the concept of a “‘con-
stant of the motion” in greater detail in the next section.

One aspect of the relationship between time and energy which
has no direct analogue in classical mechanics is the so-called ‘“‘time-
energy uncertainty principle.” We define for a given observable @
its evolution time Ty by

T, = AA /’ an, (4-35)



78 The Theory of Quantum Mechanics

To understand the physical significance of T, , let us first suppose
that d(A) /dt is constant in time. Then, in a given time interval At,
the expectation value of @ would change by an amount | d(A), /d¢|- At
in particular, we see from Eq. (4-35) that in a time interval equal to
Ta, (A)t would change by an amount equal to AA,. In general, even
if d(A),/dt is not a constant, it is obvious that Ty, as defined by
Eq. (4-35), provides a very reasonable estimate of the amount of
of time which must elapse before the expectation value of @ changes
by an amount equal to the uncertainty in @. In other words, T is
the time which must elapse before the average of the values measured
for @ in a series of repeated measurements, (A);, changes or evolves
" enough to be noticeable over the intrinsic spread in these values,
AA,. Tt is in this sense that T, specifies the “evolution time” of @.

Now, by combining the time-evolution equation for (A),,
Eq. (4-34), with the generalized uncertainty relation, Eq. (4-24), we
can easily derive the following inequality:

T@_ AH

1AV4
oS+

(4-36)

Exercise 44. Derive Eq. (4-36). [Hint; First obtain an expression for
ld(A), /dt| from Eq. (4-34); then make use of Egs. (4-24) and
(4-35).]

The above inequality is called the time-energy uncertainty
relation. It states that the more precisely the energy of a system is
defined (i.e., the smaller AH is), then the more slowly will any observ-
able @ change “noticeably” with time (i.e., the larger any T, must
be); conversely, if any observable plainly exhibits a rapid variation
with time (i.e., if any Tq is small), then the system cannot have a
well-defined energy (i.e., AH must be large). These predictions of
Eq. (4-36), although obviously ‘“nonclassical” in character, have been
amply confirmed in the laboratory by spectroscopic studies com-
paring the “widths” of excited atomic energy levels with the cor-
responding “lifetimes” of these levels: it is found that narrow, sharp
energy levels have long lifetimes, while broad, diffuse energy levels
have short lifetimes.

4-4c The Time Evolution Equation for (a, ,¥,)
Constants of the Motion and Stationary States

There are two reasons why it is useful to know the time-de-
pendence of the quantities

a4 (t) = (ay,¥y) n=12,... (4-37)
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First, the square moduli of these quantities determine the shape of
the distribution curve for @ [see Fig. 3], and it is clearly of interest
to know how this curve changes with time. Second, since the state
vector of the system can always be written in the form

oo

Ti(x) = ) (o W)an () = ) a (D (%) (4-38)

n=1

then if a simple expression for a, (¢) can be tound, we will have an
explicit representation for the time-varying state vector.

To see what we can discover about the time-dependence of
a,(t), let us calculate its time derivative. Since a, (x) is independent
of t, we have

e e )
dt a (t) t (an’\pt)— (an9 at>

Inserting the expression for 0, /d¢ given in Postulate 5,
d i~ ) i ~
== = - — =-— HY,
dr a,(t) (an, hH\Ift h(an, t)

We now replace ¥, (x) by its expansion in Eq. (4-38), and make use
of the linearity of H:

dita (t) = h(xH Zam(t)am> =—% <an, Zam(t)Ham>

m=1 m=1

Finally, using Eqs. (2-34b) and (2-34c), we obtain the result
d
e L Z am () (@, Hap) n=12,... (4-39)

For an arbitrary eigenbasis {a;(x)}, this is about as far as we can
go. Recognizing that the quantities («,,Ha,, ) in Egs. (4-39) are
ordinary complex numbers, we see that Eqs. (4-39) express the time
derivative of each a,(t) as a linear combination of all the a;(t).
principle, one could solve this infinite set of ‘“coupled, linear dif-
ferential equations,” and so obtain an explicit expression for each
a,(t); in practice, however, this is usually far too difficult to do for
an arbitrary eigenbasis {a;(x)}.

There is, however, one important case for which Egs. (4-39)
can be solved fairly easily. Suppose the eigenbasis {a;(x)} coincides
with the energy eigenbasis {n;(x)}; this will be true if the observable
operator A under consideration coincides with H, or more generally,
by the Compatibility Theorem, if A commutes w1th H. In this case,
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it is easy to show that Eqgs. (4-39) ‘““‘uncouple” and take the simple
forms

d i
E(nn a‘llt) = %En ("7n 7‘Ilt) n= 172, LI (4'40)

Exercise 45. Show that Eqs. (4-39) reduce to Eqgs. (4-40) when the
eigenvectors {a;(x)} coincide with the energy eigenvectors
{ni(x)} as defined in Eq. (4-25).

Egs. (4-40) can be immediately integrated: Writing it as

d(nn ’\Ilt) lEn
e a1
(nn 3\I’t) h

then an elementary integration yields

iE,
h
where we have written the integrating constant as log C. Using the
properties of the exponential, we can write this last equation as

log (n,,%) = -

(nn ,\I’t) = Ce—iEnt/h

where the complex exponential has been defined and discussed in
Exercise 7. Finally sincee® = 1, we see that we must set C = (n,,,%,) ;
consequently, we conclude that

(M, %) = (,,¥,)e Ent/t p=12 . . (4-41)

Thus while it is not possible to say very much about the time depen-
dence of (a,,¥,) for an arbitrary eigenbasis {a;(x)}, Egs. (4-41) give
the explicit time dependence for the case in which the eigenbasis is
the energy eigenbasis. For the remainder of this section, we shall
examine some of the consequences of Eqgs. (4-41).

Let us first discuss Eqgs. (4-41) from the viewpoint that
I(n,,%,)|* represents a probability. We recall from Exercise 43 that
any observable @ whose corresponding operator A commutes with H
is a sort of “constant of the motion” in the sense that <A>, and AA
do not change with time. Now if A commutes with H, then accord

A

ing to the Compatibility Theorem, A and H must share the same

FOur derivation of Eq. (4-41) may leave the reader a bit uneasy, since it
involved the complex logarithm, a concept which we have not discussed. How-
ever, the reader can easily verify that the formula for (7,,¥%) given in Eqgs. (4-41)
does indeed satisfy the differential equations (4-40), simply by invoking Eq.
(2-20e). Since Eqgs. (4-41) satisfy both the differential equations and the initial
conditions, it is therefore the solution.
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eigenbasis; thus, by making at most a rearrangement of indices, we
can put

00 () =Gl 22152500,
This being the case, Egs. (4-41) imply that
(an ’\Ijt) = (nn!\llt) = (nn,\_IJO)e—iEnt/h =3 (an ,\Ilo)e—iEnl/h

Therefore, the probability of measuring for @ the eigenvalue A, at
time ¢ is

(o, ¥ e)1* = 1(0n, W0 )2l Entin |2 = |(ay, W)

where we have made use of Egs. (2-18a) and (2-20d). We have thus
shown that, if A commutes with H, then the probability of measuring
for @ the eigenvalue A, is the same at time ¢ as at time 0. Since the
quantities [(a,,¥,)|? determine the distribution curve for @ at time
t [see Fig. 3], then we see that, if A commutes with H, not only are
the “center” and “width” of the distribution curve constant in time
[see Exercise 43], but indeed the entire curve does not change with
time. We are therefore quite justified in calling @ a constant of the
motion whenever A commutes with H.

Let us next examine the consequences of Eqgs. (4-41) with re-
gard to the representation of the time-varying state vector. Since we
can always expand ¥ ,(x) in the eigenbasis of H,

V(x)= ) .Y ), ()

n=1

then substituting Eqgs. (4-41) yields at once

V(@)= ) (n.¥o)e Ertin, (x) (4-42)
n=1

Inasmuch as the complex numbers (n,,¥,) do not depend upon
time, Eq. (4-42) shows explicitly the time dependence of the state
vector W¥,(x), and therefore represents a general solution to the
fundamental time-evolution equation (4-26). We note in particular
that, since e’ = 1, then for ¢t = 0 Eq. (4-42) reduces to

Vox)= ) (1,,%0)1a () (4-43)

n=1
which of course is an identity for any ¥ -vector ¥, (x) [see Eq.
(4-2b)]. Indeed, an easy way to remember Eq. (4-42) is to first write
down Eq. (4-43), and then simply insert the factor exp (-iE, t/h) in
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the nth term of the sum. We have in Eq. (4-42) yet another instance

of the intimate connection between time and energy: if we can find

the energy eigenvectors {n;(x)}and eigenvalues {E;}—i.e., if we can
solve the energy eigenvalue equation (4-25)—then we can write down
at once a complete solution to the time-evolution equation for the

state vector, Eq. (4-26).

Exercise 46. By directly substituting Eq. (4-42) into Eq. (4-26),
show that this expression for W¥,(x) does indeed satisfy the
time-evolution equation of Postulate 5. [Hint: Make use of
Egs. (2-20e) and (4-25), and remember that neither 0 /3¢ nor H
has any effect upon the complex constants (n,,,¥,).]

It is interesting to consider the special case in which the initial
state vector, ¥, (x), coincides with one of the energy eigenvectors,
say np (x). In this case, the coefficients in Eq. (4-42) are

(nn’\IlO)= (nn ,nk)= 8nk
and Eq. (4-42) reduces to

D) =e  Er¥t iy (x)

This says that ¥,(») differs from ¥, (x) = n, (x) only by a scalar fac-
tor whose square modulus is unity [see Eq. (2-20d)] :

leErtm |2 =1

Consequently, by Postulate 1, the state of the system at time ¢ is
physically the same as the state at time 0. In such a case, it is clear
that all observables will behave like ‘‘constants of the motion.”

Exercise 47.
(a) Prove directly that if ¥,(x)=e£r!%n, (x), then for any
observable @, the expectation value (A),, the uncertainty
AA;, and the probabilities [(a,,¥,)|*> are all constant in
time—regardless of whether or not A commutes with H.

tEquation (4-42) can also be derived from Eq. (4-43) by using the time
evolution operator U(t)= exp (-iHt/h), which was discussed in Sec. 4-4a. We
recall that this operator is a linear operator, and has eigenvectors {n,(x)}and
eigenvalues {exp (-iE,t/h)}. Therefore,

Vi) = () o (x) = T(t) ) (M Vo)n(x)

n=1

= ) Yo UOMax) = ), (Ma,¥o) € Entig (x)

n=1 n=1

which is evidently Eq. (4-42).
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(b) Show that in this case we will have at any time ¢, AH = 0
and Ty =<. Discuss this result in the light of the Time-
Energy Uncertainty Relation, Eq. (4-36). [Hint: Use
Exercise 33 and the definition in Eq. (4-35).]

The foregoing considerations motivate us to define, for a given
system with a given Hamiltonian, the set of time-dependent ¥ -vectors
™) ()}

T ()= v (x,t)=e Entlhy (x) n=1,2,... (4-44)

According to the above arguments, if ¥, (x) coincides with n, (x),
then ¥, (x) will be given by ¥{")(x). Moreover, by Exercise 47, if
the state vector of the system coincides with ¥{")(x), then all ob-
servables behave like constants of the motion. For this reason, the
vectors {¥ (™ (x)} are called the stationary states of the system. In
terms of these stationary states, Eq. (4-42) can be written

W(x)= ) (D, W,0) M (@) (4-45)

Exercise 48. Prove that Eq. (4-45) follows from Egs. (4-42) and
(4-44).

Thus the stationary states of a system are important because,
given any initial state vector ¥, (x), the state vector at any subsequent
time ¢ can be written as a linear combination of the stationary states.
The coefficients in this linear combination are the time-independent
complex numbers (¥§ ¥,), which can evidently be evaluated if
the stationary states and the initial state are known as functions of x.

We see then that ¥;(x) can in principle always be found if the
stationary states can be determined. According to Eq. (4-42), the
determination of the stationary states is tantamount to finding the
eigenvectors and eigenvalues of the energy operator, H. For this
reason, most of the actual “problem solving” in quantum mechanics
is concerned with solving the energy eigenvalue equation (4-25) for
various Hamiltonian operators—an enterprise which is usually very
difficult from a mathematical point of view.

4-4d ““Determinism’’ in Quantum Mechanics

We have now essentially completed the task of erecting the main
conceptual framework of quantum mechanics. In order to apply the
theory to a particular situation, it remains only to specify the exact
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forms of the relevant observable operators, and then to find their
eigenvectors and eigenvalues. In the next section we shall discuss
how this is done for one particularly important class of physical sys-
tems. But before doing so, it seems appropriate now to reconsider,
from the viewpoint of quantum mechanics, our brief remarks in Sec.
3-3 on the matter of “determinism.”’

By ““determinism” we mean here the general possibility of pre-
dicting exactly how the state of a system will change in any given
circumstance. In classical mechanics, the change in the state of any
system with time is in principle completely predictable (barring, of
course, any unwarranted disturbance of the system by some external
agent), and on this basis we concluded that classical mechanics im-
plies a ‘“‘deterministic’® universe.

With regard to quantum mechanics, the situation from one point
of view is very similar: In our discussion of Postulate 5 we saw that
the state vector of a quantum system evolves with time in a com-
pletely predictable manner, and in this sense it may be said that
quantum mechanics, like classical mechanics, is a ‘“‘deterministic
theory.” However, in quantum mechanics the state of a system not
only changes with the passage of time, but it also changes as a result
of being measured. In our discussion of Postulates 3 and 4 we found
that the change induced in the state vector by a measurement is in
principle neither controllable nor predictable. That is, if we decide
to measure @ on a given state, it is usually not possible to know pre-
cisely which eigenvector of A the state will be forced into by the
measurement. From this point of view, it is evident that quantum
mechanics is not a completely deterministic theory.

If we choose to regard the entire universe as a single system,
governed by one super-Hamiltonian operator, then since there is
nothing “external” which can make a measurement on this system,
we may justifiably assert that the state of the whole universe evolves
with time in a completely deterministic way. If, however, we wish to
consider only a portion of the universe as our system, omitting for
example ourselves and our measuring apparatus, then we must evi-
dently contend with a certain amount of indeterministic behavior
every time we make a measurement upon the system.

The general problem of assessing the impact of quantum me-
chanics upon the concepts of determinism and causality is obviously
a very intriguing and many-faceted one, and is as much in the domain
of philosophy as physics. Without demeaning the importance of
this complex problem, we shall not try to discuss it any further here.
We shall simply point out that any serious discussion of these mat-
ters must also consider the question of whether or not the so-called
“orthodox” interpretation of quantum mechanics, which we have
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been discussing, really provides the best and most comprehensive
picture of the physical world. In any case, it seems safe to say that
the problem of ‘“determinism in Nature” is no longer considered to
be a settled matter, as it was before the invention of quantum me-
chanics, and indeed, it will probably remain in an unresolved state
for some time to come.

45 MOTION OF A PARTICLE IN ONE DIMENSION

The foregoing development of the theory of quantum mechanics
has been carried out in terms of general observables associated with
a general one-dimensional system. We wish now to apply these re-
sults to the specific system of a mass m moving along the x-axis in a
potential field V(x)—a system which we discussed from the stand-
point of classical mechanics in Chapter 3. Experiments tell us that
our classical treatment of this system is entirely adequate for a ““tan-
gible” particle moving over ‘visible’’ distances. However, experi-
ments also tell us that our classical description is not universally valid;
it fails, for example, to correctly describe the behavior of an electron
(mass =~ 10”27 gram) on a scale of the order of an atomic diameter
(distance = 10 ® centimeter). Now, we can expect that the quantum
treatment of such a system will be valid in both cases; thus we expect
that, on the one hand, the quantum description will reduce to the
classical description in the macroscopic limit, and on the other hand
that it will account for such nonclassical phenomena as quantized
observables and the wave-particle duality in the microscopic limit.

In Sec. 4-5a we shall define and discuss the relevant observable
operators for a mass m moving on the x-axis in a potential field
V(x). In Sec. 4-56b we shall indicate how these operators lead to a dual-
istic “wave-particle’ behavior. In Sec. 4-5¢ we shall discuss the way in
which the classical description appears .as a limiting case of the
quantum description. Finally, in Sec. 4-5d we shall work out a simple
“quantum mechanics problem’ which is typical of those considered
in virtually all texts and courses on elementary quantum mechanics.

4-5a Formation of the Observable Operators
The Schrodinger Equations and the Position Probability

In classical mechanics, the system consisting of a particle moving
along the x-axis has two basic observables—namely, the “position”
x and the “momentum” p. Many other observables can be expressed



